739
Views
3
CrossRef citations to date
0
Altmetric
Original Research Articles

The Unc13A isoform is important for phasic release and olfactory memory formation at mushroom body synapses

, , , , , , , & show all
Pages 106-114 | Received 04 Nov 2019, Accepted 25 Dec 2019, Published online: 24 Jan 2020

References

  • Aso, Y., Ray, R.P., Long, X., Bushey, D., Cichewicz, K., Ngo, T.-T., … Rubin, G.M. (2019). Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. eLife, 8, e49257. doi:10.7554/eLife.49257
  • Aso, Y., & Rubin, G.M. (2016). Dopaminergic neurons write and update memories with cell-type-specific rules. eLife, 5, e16135. doi:10.7554/eLife.16135
  • Aso, Y., Sitaraman, D., Ichinose, T., Kaun, K.R., Vogt, K., Belliart-Guérin, G., … Rubin, G.M. (2014). Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife, 3, e04580. doi:10.7554/eLife.04580
  • Blum, A.L., Li, W., Cressy, M., & Dubnau, J. (2009). Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types. Current Biology, 19, 1341–1350. doi:10.1016/j.cub.2009.07.016
  • Böhme, M.A., Beis, C., Reddy-Alla, S., Reynolds, E., Mampell, M.M., Grasskamp, A.T., … Sigrist, S.J. (2016). Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca(2+) channel-vesicle coupling. Nature Neuroscience, 19, 1311–1320. doi:10.1038/nn.4364
  • Bouzaiane, E., Trannoy, S., Scheunemann, L., Plaçais, P.-Y., & Preat, T. (2015). Two independent mushroom body output circuits retrieve the six discrete components of drosophila aversive memory. Cell Reports, 11, 1280–1292. doi:10.1016/j.celrep.2015.04.044
  • Eggermann, E., Bucurenciu, I., Goswami, S.P., & Jonas, P. (2012). Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses. Nature Reviews. Neuroscience, 13, 7–21. doi:10.1038/nrn3125
  • Fulterer, A., Andlauer, T.F.M., Ender, A., Maglione, M., Eyring, K., Woitkuhn, J., … Sigrist, S.J. (2018). Active zone scaffold protein ratios tune functional diversity across brain synapses. Cell Reports, 23, 1259–1274. doi:10.1016/j.celrep.2018.03.126
  • Gjorgjieva, J., Drion, G., & Marder, E. (2016). Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance. Current Opinion in Neurobiology, 37, 44–52. doi:10.1016/j.conb.2015.12.008
  • Gupta, N., & Stopfer, M. (2014). A temporal channel for information in sparse sensory coding. Current Biology, 24, 2247–2256. doi:10.1016/j.cub.2014.08.021
  • Hige, T., Aso, Y., Modi, M.N., Rubin, G.M., & Turner, G.C. (2015). Heterosynaptic plasticity underlies aversive olfactory learning in Drosophila. Neuron, 88, 985–998. doi:10.1016/j.neuron.2015.11.003
  • Honegger, K.S., Campbell, R.A.A., & Turner, G.C. (2011). Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. The Journal of Neuroscience, 31, 11772–11785. doi:10.1523/JNEUROSCI.1099-11.2011
  • Jackman, S.L., & Regehr, W.G. (2017). The mechanisms and functions of synaptic facilitation. Neuron, 94, 447–464. doi:10.1016/j.neuron.2017.02.047
  • Jacob, P.F., & Waddell, S. (2019). Spaced training forms complementary long-term memories of opposite valence in Drosophila. bioRxiv, 785618. doi:10.1101/785618.
  • Kahsai, L., & Zars, T. (2011). Learning and memory in Drosophila: Behavior, genetics, and neural systems. International Review of Neurobiology, 99, 139–167. doi:10.1016/B978-0-12-387003-2.00006-9
  • König, C., Khalili, A., Ganesan, M., Nishu, A.P., Garza, A.P., & Niewalda, T. (2018). Reinforcement signaling of punishment versus relief in fruit flies. Learning & Memory (Cold Spring Harbor, NY), 25, 247–257. doi:10.1101/lm.047308.118
  • Luo, S.X., Axel, R., & Abbott, L.F. (2010). Generating sparse and selective third-order responses in the olfactory system of the fly. Proceedings of the National Academy of Sciences of the United States of America, 107, 10713–10718. doi:10.1073/pnas.1005635107
  • Owald, D., Felsenberg, J., Talbot, C.B., Das, G., Perisse, E., Huetteroth, W., & Waddell, S. (2015). Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron, 86, 417–427. doi:10.1016/j.neuron.2015.03.025
  • Pascual, A., & Préat, T. (2001). Localization of long-term memory within the Drosophila mushroom body. Science (New York, NY), 294, 1115–1117. doi:10.1126/science.1064200
  • Raccuglia, D., Huang, S., Ender, A., Heim, M.-M., Laber, D., Suárez-Grimalt, R., … Owald, D. (2019). Network-specific synchronization of electrical slow-wave oscillations regulates sleep drive in Drosophila. Current Biology, 29, 3611.e3–3621.e3. doi:10.1016/j.cub.2019.08.070
  • Reddy-Alla, S., Böhme, M.A., Reynolds, E., Beis, C., Grasskamp, A.T., Mampell, M.M., … Walter, A.M. (2017). Stable positioning of Unc13 restricts synaptic vesicle fusion to defined release sites to promote synchronous neurotransmission. Neuron, 95, 1350–1364.e12. doi:10.1016/j.neuron.2017.08.016
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9, 676–682. doi:10.1038/nmeth.2019
  • Schneider, C.A., Rasband, W.S., & Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. doi:10.1038/nmeth.2089
  • Sigrist, S.J., Reiff, D.F., Thiel, P.R., Steinert, J.R., & Schuster, C.M. (2003). Experience-dependent strengthening of Drosophila neuromuscular junctions. The Journal of Neuroscience, 23, 6546–6556. doi:10.1523/JNEUROSCI.23-16-06546.2003
  • Stanley, E.F. (2016). The nanophysiology of fast transmitter release. Trends in Neurosciences, 39, 183–197. doi:10.1016/j.tins.2016.01.005
  • Takemura, S-Y., Aso, Y., Hige, T., Wong, A., Lu, Z., Xu, C.S., … Scheffer, L.K. (2017). A connectome of a learning and memory center in the adult Drosophila brain. eLife, 6, e26975. doi:10.7554/eLife.26975
  • Tully, T., & Quinn, W.G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. Journal of Comparative Physiology, 157, 263–277. doi:10.1007/BF01350033
  • Turner, G.C., Bazhenov, M., & Laurent, G. (2008). Olfactory representations by Drosophila mushroom body neurons. Journal of Neurophysiology, 99, 734–746. doi:10.1152/jn.01283.2007
  • Vyleta, N.P., & Jonas, P. (2014). Loose coupling between Ca2+ channels and release sensors at a plastic hippocampal synapse. Science (New York, NY), 343, 665–670. doi:10.1126/science.1244811
  • Wadel, K., Neher, E., & Sakaba, T. (2007). The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron, 53, 563–575. doi:10.1016/j.neuron.2007.01.021
  • Wang, S.S.H., Held, R.G., Wong, M.Y., Liu, C., Karakhanyan, A., & Kaeser, P.S. (2016). Fusion competent synaptic vesicles persist upon active zone disruption and loss of vesicle docking. Neuron, 91, 777–791. doi:10.1016/j.neuron.2016.07.005
  • Wilson, R.I. (2013). Early olfactory processing in Drosophila: Mechanisms and principles. Annual Review of Neuroscience, 36, 217–241. doi:10.1146/annurev-neuro-062111-150533
  • Wilson, R.I., Turner, G.C., & Laurent, G. (2004). Transformation of olfactory representations in the Drosophila antennal lobe. Science (New York, NY), 303, 366–370. doi:10.1126/science.1090782
  • Yu, D., Akalal, D.-B.G., & Davis, R.L. (2006). Drosophila alpha/beta mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron, 52, 845–855. doi:10.1016/j.neuron.2006.10.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.