1,148
Views
23
CrossRef citations to date
0
Altmetric
Review Articles

Cellular and circuit mechanisms of olfactory associative learning in Drosophila

, &
Pages 36-46 | Received 22 Aug 2019, Accepted 10 Jan 2020, Published online: 11 Feb 2020

References

  • Akalal, D.B., Yu, D., & Davis, R.L. (2010). A late-phase, long-term memory trace forms in the gamma neurons of Drosophila mushroom bodies after olfactory classical conditioning. Journal of Neuroscience, 30, 16699–16708. doi:10.1523/JNEUROSCI.1882-10.2010
  • Aso, Y., Hattori, D., Yu, Y., Johnston, R.M., Iyer, N.A., Ngo, T.T., … Tanimoto, H. (2014a). The neuronal architecture of the mushroom body provides a logic for associative learning. eLife, 3, e04577. doi:10.7554/eLife.04577
  • Aso, Y., Herb, A., Ogueta, M., Siwanowicz, I., Templier, T., Friedrich, A.B., … Tanimoto, H. (2012). Three dopamine pathways induce aversive odor memories with different stability. PLoS Genetics, 8, e1002768. doi:10.1371/journal.pgen.1002768
  • Aso, Y., Sitaraman, D., Ichinose, T., Kaun, K.R., Vogt, K., Belliart-Guerin, G., … Schnaitmann, C. (2014b). Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. Elife, 3, e04580. doi:10.7554/eLife.04580
  • Aso, Y., Siwanowicz, I., Bräcker, L., Ito, K., Kitamoto, T., Tanimoto, H. (2010). Specific dopaminergic neurons for the formation of labile aversive memory. Current Biology, 20, 1445–1451. doi: 10.1016/j.cub.2010.06.048
  • Barnstedt, O., Owald, D., Felsenberg, J., Brain, R., Moszynski, J.P., Talbot, C.B., … Waddell, S. (2016). Memory-relevant mushroom body output synapses are cholinergic. Neuron, 89, 1237–1247. doi:10.1016/j.neuron.2016.02.015
  • Berry, J.A., Phan, A., & Davis, R.L. (2018). Dopamine neurons mediate learning and forgetting through bidirectional modulation of a memory trace. Cell Reports, 25, 651–662. doi:10.1016/j.celrep.2018.09.051
  • Bielopolski, N., Amin, H., Apostolopoulou, A.A., Rozenfeld, E., Lerner, H., Huetteroth, W., … Parnas, M. (2019). Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory learning in adult Drosophila. Elife, 8, pii: e48264. doi:10.7554/eLife.48264
  • Boto, T., Louis, T., Jindachomthong, K., Jalink, K., & Tomchik, S.M. (2014). Dopaminergic modulation of cAMP drives nonlinear plasticity across the drosophila mushroom body lobes. Current Biology, 24, 822–831. doi:10.1016/j.cub.2014.03.021
  • Boto, T., Stahl, A., Zhang, X.F., Louis, T., & Tomchik, S.M. (2019). Independent contributions of discrete dopaminergic circuits to cellular plasticity, memory strength, and valence in Drosophila. Cell Reports, 27, 2014–2021.e2. doi:10.1016/j.celrep.2019.04.069
  • Bouzaiane, E., Trannoy, S., Scheunemann, L., Placais, P.Y., & Preat, T. (2015). Two independent mushroom body output circuits retrieve the six discrete components of Drosophila aversive memory. Cell Reports, 11, 1280–1292. doi:10.1016/j.celrep.2015.04.044
  • Brembs, B., & Plendl, W. (2008). Double dissociation of PKC and AC manipulations on operant and classical learning in Drosophila. Current Biology, 18, 1168–1171. doi:10.1016/j.cub.2008.07.041
  • Broadie, K., Rushton, E., Skoulakis, E.M., & Davis, R.L. (1997). Leonardo, a Drosophila 14-3-3 protein involved in learning, regulates presynaptic function. Neuron, 19, 391–402. doi:10.1016/S0896-6273(00)80948-4
  • Burke, C.J., Huetteroth, W., Owald, D., Perisse, E., Krashes, M.J., Das, G., … Waddell, S. (2012). Layered reward signalling through octopamine and dopamine in Drosophila. Nature, 492, 433–437. doi:10.1038/nature11614
  • Busto, G.U., Cervantes-Sandoval, I., & Davis, R.L. (2010). Olfactory learning in Drosophila. Physiology, 25, 338–346. doi:10.1152/physiol.00026.2010
  • Cervantes-Sandoval, I., & Davis, R.L. (2012). Distinct traces for appetitive versus aversive olfactory memories in DPM neurons of Drosophila. Current Biology, 22, 1247–1252. doi:10.1016/j.cub.2012.05.009
  • Cervantes-Sandoval, I., Phan, A., Chakraborty, M., & Davis, R.L. (2017). Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning. Elife, 6, pii: e23789. doi:10.7554/eLife.23789
  • Chen, C.C., Wu, J.K., Lin, H.W., Pai, T.P., Fu, T.F., Wu, C.L., … Chiang, A.S. (2012). Visualizing long-term memory formation in two neurons of the Drosophila brain. Science, 335, 678–685. doi:10.1126/science.1212735
  • Christiansen, F., Zube, C., Andlauer, T.F., Wichmann, C., Fouquet, W., Owald, D., … Luna, A.J. (2011). Presynapses in Kenyon cell dendrites in the mushroom body calyx of Drosophila. Journal of Neuroscience, 31, 9696–9707. doi:10.1523/JNEUROSCI.6542-10.2011
  • Claridge-Chang, A., Roorda, R.D., Vrontou, E., Sjulson, L., Li, H., Hirsh, J., & Miesenböck, G. (2009). Writing memories with light-addressable reinforcement circuitry. Cell, 139, 405–415. doi:10.1016/j.cell.2009.08.034
  • Cohn, R., Morantte, I., & Ruta, V. (2015). Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell, 163, 1742–1755. doi:10.1016/j.cell.2015.11.019
  • Connolly, J.B., Roberts, I.J.H., Armstrong, J.D., Kaiser, K., Forte, M., Tully, T., & O'Kane, C.J. (1996). Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science, 274, 2104–2107. doi:10.1126/science.274.5295.2104
  • Crittenden, J.R., Skoulakis, E.M., Han, K.A., Kalderon, D., & Davis, R.L. (1998). Tripartite mushroom body architecture revealed by antigenic markers. Learning and Memory, 5, 38–51.
  • Crocker, A., Guan, X.J., Murphy, C.T., & Murthy, M. (2016). Cell-type-specific transcriptome analysis in the Drosophila mushroom body reveals memory-related changes in gene expression. Cell Reports, 15, 1580–1596. doi:10.1016/j.celrep.2016.04.046
  • Croset, V., Treiber, C.D., & Waddell, S. (2018). Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. Elife, 7, pii: e34550. doi:10.7554/eLife.34550
  • Davis, R.L. (2005). Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annual Review of Neuroscience, 28, 275–302. doi:10.1146/annurev.neuro.28.061604.135651
  • Davis, R.L., Cherry, J., Dauwalder, B., Han, P.L., & Skoulakis, E. (1995). The cyclic AMP system and Drosophila learning. Molecular and Cellular Biochemistry, 149-150, 271–278. doi:10.1007/BF01076588
  • de Belle, J.S., & Heisenberg, M. (1994). Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science, 263, 692–695. doi:10.1126/science.8303280
  • Drain, P., Dubin, A.E., & Aldrich, R.W. (1994). Regulation of Shaker K + channel inactivation gating by the cAMP-dependent protein kinase. Neuron, 12, 1097–1109. doi:10.1016/0896-6273(94)90317-4
  • Dudai, Y. (1988). Neurogenetic dissection of learning and short-term memory in Drosophila. Annual Review of Neuroscience, 11, 537–563. doi:10.1146/annurev.ne.11.030188.002541
  • Eichler, K., Li, F., Litwin-Kumar, A., Park, Y., Andrade, I., Schneider-Mizell, C.M., … Gerber, B. (2017). The complete connectome of a learning and memory centre in an insect brain. Nature, 548, 175–182. doi:10.1038/nature23455
  • Felsenberg, J., Jacob, P.F., Walker, T., Barnstedt, O., Edmondson-Stait, A.J., Pleijzier, M.W., … Perisse, E. (2018). Integration of parallel opposing memories underlies memory extinction. Cell, 175, 709–722. doi:10.1016/j.cell.2018.08.021
  • Fiala, A. (2007). Olfaction and olfactory learning in Drosophila: Recent progress. Current Opinion in Neurobiology, 17, 720–726. doi:10.1016/j.conb.2007.11.009
  • Galili, D.S., Dylla, K.V., Ludke, A., Friedrich, A.B., Yamagata, N., Wong, J.Y., … Tanimoto, H. (2014). Converging circuits mediate temperature and shock aversive olfactory conditioning in Drosophila. Current Biology, 24, 1712–1722. doi:10.1016/j.cub.2014.06.062
  • Gervasi, N., Tchenio, P., & Preat, T. (2010). PKA dynamics in a Drosophila learning center: coincidence detection by rutabaga adenylyl cyclase and spatial regulation by dunce phosphodiesterase. Neuron, 65, 516–529. doi:10.1016/j.neuron.2010.01.014
  • Goodwin, S.F., Del Vecchio, M., Velinzon, K., Hogel, C., Russell, S.R., Tully, T., & Kaiser, K. (1997). Defective learning in mutants of the Drosophila gene for a regulatory subunit of cAMP-dependent protein kinase. Journal of Neuroscience, 17, 8817–8827. doi:10.1523/JNEUROSCI.17-22-08817.1997
  • Griffith, L.C., Verselis, L.M., Aitken, K.M., Kyriacou, C.P., Danho, W., & Greenspan, R.J. (1993). Inhibition of calcium/calmodulin-dependent protein kinase in Drosophila disrupts behavioral plasticity. Neuron, 10, 501–509. doi:10.1016/0896-6273(93)90337-Q
  • Guven-Ozkan, T., & Davis, R.L. (2014). Functional neuroanatomy of Drosophila olfactory memory formation. Learning and Memory, 21, 519–526. doi:10.1101/lm.034363.114
  • Han, K.A., Millar, N.S., Grotewiel, M.S., & Davis, R.L. (1996). DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies. Neuron, 16, 1127–1135. doi:10.1016/S0896-6273(00)80139-7
  • Handler, A., Graham, T.G.W., Cohn, R., Morantte, I., Siliciano, A.F., Zeng, J., … Ruta, V. (2019). Distinct dopamine receptor pathways underlie the temporal sensitivity of associative learning. Cell, 178, 60–75.e19. doi:10.1016/j.cell.2019.05.040
  • Hardin, P.E., Hall, J.C., & Rosbash, M. (1992). Circadian oscillations in period gene mRNA levels are transcriptionally regulated. Proceedings of the National Academy of Sciences, 89, 11711–11715. doi:10.1073/pnas.89.24.11711
  • Haynes, P.R., Christmann, B.L., & Griffith, L.C. (2015). A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. Elife, 4. doi:10.7554/eLife.03868
  • Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nature Reviews Neuroscience, 4, 266–275. doi:10.1038/nrn1074
  • Heisenberg, M., Borst, A., Wagner, S., & Byers, D. (1985). Drosophila mushroom body mutants are deficient in olfactory learning. Journal of Neurogenetics, 2, 1–30. doi:10.3109/01677068509100140
  • Hige, T., Aso, Y., Modi, M.N., Rubin, G.M., & Turner, G.C. (2015). Heterosynaptic plasticity underlies aversive olfactory learning in Drosophila. Neuron, 88, 985–998. doi:10.1016/j.neuron.2015.11.003
  • Honegger, K.S., Campbell, R.A., & Turner, G.C. (2011). Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. Journal of Neuroscience, 31, 11772–11785. doi:10.1523/JNEUROSCI.1099-11.2011
  • Huetteroth, W., Perisse, E., Lin, S., Klappenbach, M., Burke, C., & Waddell, S. (2015). Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila. Current Biology, 25, 751–758. doi:10.1016/j.cub.2015.01.036
  • Ichinose, T., Aso, Y., Yamagata, N., Abe, A., Rubin, G.M., & Tanimoto, H. (2015). Reward signal in a recurrent circuit drives appetitive long-term memory formation. Elife, 4, e10719. doi:10.7554/eLife.10719
  • Iliadi, K.G., Iliadi, N., & Boulianne, G.L. (2017). Drosophila mutants lacking octopamine exhibit impairment in aversive olfactory associative learning. European Journal of Neuroscience, 46, 2080–2087. doi:10.1111/ejn.13654
  • Johnson, O., Becnel, J., & Nichols, C.D. (2011). Serotonin receptor activity is necessary for olfactory learning and memory in Drosophila melanogaster. Neuroscience, 192, 372–381. doi:10.1016/j.neuroscience.2011.06.058
  • Joiner, W.J., Crocker, A., White, B.H., & Sehgal, A. (2006). Sleep in Drosophila is regulated by adult mushroom bodies. Nature, 441, 757–760. doi:10.1038/nature04811
  • Kane, N.S., Robichon, A., Dickinson, J.A., & Greenspan, R.J. (1997). Learning without performance in PKC-deficient Drosophila. Neuron, 18, 307–314. doi:10.1016/S0896-6273(00)80270-6
  • Kaun, K.R., Hendel, T., Gerber, B., Sokolowski, M.B. (2007) Natural variation in Drosophila larval reward learning and memory due to a cGMP-dependent protein kinase. Learning and Memory, 14, 342–349. doi: 10.1101/lm.505807
  • Keleman, K., Kruttner, S., Alenius, M., & Dickson, B.J. (2007). Function of the Drosophila CPEB protein Orb2 in long-term courtship memory. Nature Neuroscience, 10, 1587–1593. doi:10.1038/nn1996
  • Kim, Y.C., Lee, H.G., & Han, K.A. (2007). D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. Journal of Neuroscience, 27, 7640–7647. doi:10.1523/JNEUROSCI.1167-07.2007
  • Kim, Y.C., Lee, H.G., Lim, J., & Han, K.A. (2013). Appetitive learning requires the alpha1-like octopamine receptor OAMB in the Drosophila mushroom body neurons. Journal of Neuroscience, 33, 1672–1677. doi:10.1523/JNEUROSCI.3042-12.2013
  • Kim, Y.K., Saver, M., Simon, J., Kent, C.F., Shao, L.S., Eddison, M., … Heberlein, U. (2018). Repetitive aggressive encounters generate a long-lasting internal state in Drosophila melanogaster males. Proceedings of the National Academy of Sciences, 115, 1099–1104. doi:10.1073/pnas.1716612115
  • Kirkhart, C., & Scott, K. (2015). Gustatory learning and processing in the Drosophila mushroom bodies. Journal of Neuroscience, 35, 5950–5958. doi:10.1523/JNEUROSCI.3930-14.2015
  • Knapek, S., Gerber, B., & Tanimoto, H. (2010). Synapsin is selectively required for anesthesia-sensitive memory. Learning and Memory, 17, 76–79. doi:10.1101/lm.1661810
  • Kuo, S.Y., Wu, C.L., Hsieh, M.Y., Lin, C.T., Wen, R.K., Chen, L.C., … Su, Y.J. (2015). PPL2ab neurons restore sexual responses in aged Drosophila males through dopamine. Nature Communications, 6, 7490. doi:10.1038/ncomms8490
  • Landayan, D., Feldman, D.S., & Wolf, F.W. (2018). Satiation state-dependent dopaminergic control of foraging in Drosophila. Scientific Reports, 8, 5777. doi:10.1038/s41598-018-24217-1
  • Levin, L.R., Han, P.L., Hwang, P.M., Feinstein, P.G., Davis, R.L., & Reed, R.R. (1992). The Drosophila learning and memory gene rutabaga encodes a Ca2+/Calmodulin-responsive adenylyl cyclase. Cell, 68, 479–489. doi:10.1016/0092-8674(92)90185-F
  • Li, H.J., Horns, F., Wu, B., Xie, Q.J., Li, J.F., Li, T.C., … Luo, L.Q. (2017). Classifying Drosophila olfactory projection neuron subtypes by single-cell RNA sequencing. Cell, 171, 1206–1220.e22. doi:10.1016/j.cell.2017.10.019
  • Lin, A.C., Bygrave, A.M., de Calignon, A., Lee, T., & Miesenbock, G. (2014). Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nature Neuroscience, 17, 559–568. doi:10.1038/nn.3660
  • Liu, C., Placais, P.Y., Yamagata, N., Pfeiffer, B.D., Aso, Y., Friedrich, A.B., … Tanimoto, H. (2012). A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature, 488, 512–516. doi:10.1038/nature11304
  • Liu, Q., Yang, X., Tian, J., Gao, Z., Wang, M., Li, Y., & Guo, A. (2016). Gap junction networks in mushroom bodies participate in visual learning and memory in Drosophila. Elife, 5, pii: e13238. doi:10.7554/eLife.13238
  • Liu, X., Buchanan, M.E., Han, K.A., & Davis, R.L. (2009). The GABAA receptor RDL suppresses the conditioned stimulus pathway for olfactory learning. Journal of Neuroscience, 29, 1573–1579. doi:10.1523/JNEUROSCI.4763-08.2009
  • Liu, X., & Davis, R.L. (2009). The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning. Nature Neuroscience, 12, 53–59. doi:10.1038/nn.2235
  • Livingstone, M.S., Sziber, P.P., & Quinn, W.G. (1984). Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell, 37, 205–215. doi:10.1016/0092-8674(84)90316-7
  • Louis, T., Stahl, A., Boto, T., & Tomchik, S.M. (2018). Cyclic AMP-dependent plasticity underlies rapid changes in odor coding associated with reward learning. Proceedings of the National Academy of Sciences, 115, E448–E457. doi:10.1073/pnas.1709037115
  • Lyutova, R., Selcho, M., Pfeuffer, M., Segebarth, D., Habenstein, J., Rohwedder, A., … Pauls, D. (2019). Reward signaling in a recurrent circuit of dopaminergic neurons and peptidergic Kenyon cells. Nature Communications, 10, 3097. doi:10.1038/s41467-019-11092-1
  • Manoli, D.S., Foss, M., Villella, A., Taylor, B.J., Hall, J.C., & Baker, B.S. (2005). Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature, 436, 395–400. doi:10.1038/nature03859
  • Mao, Z., & Davis, R.L. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Frontiers in Neural Circuits, 3, 5. doi:10.3389/neuro.04.005.2009
  • Masek, P., Worden, K., Aso, Y., Rubin, G.M., & Keene, A.C. (2015). A dopamine-modulated neural circuit regulating aversive taste memory in Drosophila. Current Biology, 25, 1535–1541. doi:10.1016/j.cub.2015.04.027
  • McBride, S.M., Giuliani, G., Choi, C., Krause, P., Correale, D., Watson, K., … Siwicki, K.K. (1999). Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron, 24, 967–977. doi:10.1016/S0896-6273(00)81043-0
  • Mery, F., Belay, A.T., So, A.K., Sokolowski, M.B., Kawecki, T.J. (2007) Natural polymorphism affecting learning and memory in Drosophila. Proceedings of the National Academy of Sciences, 104, 13051–13055. doi: 10.1073/pnas.0702923104
  • Michels, B., Chen, Y.C., Saumweber, T., Mishra, D., Tanimoto, H., Schmid, B., … Gerber, B. (2011). Cellular site and molecular mode of synapsin action in associative learning. Learning and Memory, 18, 332–344. doi:10.1101/lm.2101411
  • Michels, B., Diegelmann, S., Tanimoto, H., Schwenkert, I., Buchner, E., & Gerber, B. (2005). A role for Synapsin in associative learning: the Drosophila larva as a study case. Learning and Memory, 12, 224–231. doi:10.1101/lm.92805
  • Miyashita, T., Kikuchi, E., Horiuchi, J., & Saitoe, M. (2018). Long-Term memory engram cells are established by c-Fos/CREB transcriptional cycling. Cell Reports, 25, 2716–2728. doi:10.1016/j.celrep.2018.11.022
  • Neuser, K., Triphan, T., Mronz, M., Poeck, B., & Strauss, R. (2008). Analysis of a spatial orientation memory in Drosophila. Nature, 453, 1244–1247. doi:10.1038/nature07003
  • Niewalda, T., Michels, B., Jungnickel, R., Diegelmann, S., Kleber, J., Kahne, T., & Gerber, B. (2015). Synapsin determines memory strength after punishment- and relief-learning. Journal of Neuroscience, 35, 7487–7502. doi:10.1523/JNEUROSCI.4454-14.2015
  • Nighorn, A., Healy, M.J., & Davis, R.L. (1991). The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropil. Neuron, 6, 455–467. doi:10.1016/0896-6273(91)90253-V
  • Nitabach, M.N., & Taghert, P.H. (2008). Organization of the Drosophila circadian control circuit. Current Biology, 18, R84–93. doi:10.1016/j.cub.2007.11.061
  • Owald, D., Felsenberg, J., Talbot, C.B., Das, G., Perisse, E., Huetteroth, W., & Waddell, S. (2015). Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron, 86, 417–427. doi:10.1016/j.neuron.2015.03.025
  • Pauls, D., Selcho, M., Gendre, N., Stocker, R.F., & Thum, A.S. (2010). Drosophila larvae establish appetitive olfactory memories via mushroom body neurons of embryonic origin. Journal of Neuroscience, 30, 10655–10666. doi:10.1523/JNEUROSCI.1281-10.2010
  • Pavlowsky, A., Schor, J., Placais, P.Y., & Preat, T. (2018). A GABAergic feedback shapes dopaminergic input on the Drosophila mushroom body to promote appetitive long-term memory. Current Biology, 28, 1783–1793. doi:10.1016/j.cub.2018.04.040
  • Pavot, P., Carbognin, E., & Martin, J.R. (2015). PKA and cAMP/CNG channels independently regulate the cholinergic Ca(2+)-response of Drosophila mushroom body neurons. eNeuro, 2, ENEURO.0054-14.2015. doi:10.1523/ENEURO.0054-14.2015
  • Pech, U., Revelo, N.H., Seitz, K.J., Rizzoli, S.O., & Fiala, A. (2015). Optical dissection of experience-dependent pre- and postsynaptic plasticity in the Drosophila brain. Cell Reports, 10, 2083–2095. doi:10.1016/j.celrep.2015.02.065
  • Perisse, E., Owald, D., Barnstedt, O., Talbot, C.B., Huetteroth, W., & Waddell, S. (2016). Aversive learning and appetitive motivation toggle feed-forward inhibition in the Drosophila mushroom body. Neuron, 90, 1086–1099. doi:10.1016/j.neuron.2016.04.034
  • Perisse, E., Yin, Y., Lin, A.C., Lin, S., Huetteroth, W., & Waddell, S. (2013). Different kenyon cell populations drive learned approach and avoidance in Drosophila. Neuron, 79, 945–956. doi:10.1016/j.neuron.2013.07.045
  • Phan, A., Thomas, C.I., Chakraborty, M., Berry, J.A., Kamasawa, N., & Davis, R.L. (2019). Stromalin constrains memory acquisition by developmentally limiting synaptic vesicle pool size. Neuron, 101, 103–118. doi:10.1016/j.neuron.2018.11.003
  • Pitman, J.L., McGill, J.J., Keegan, K.P., & Allada, R. (2006). A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature, 441, 753–756. doi:10.1038/nature04739
  • Pugh, G.E. (1977). The Biological Origin of Human Values. New York: Basic Books, Inc.
  • Putz, G., Bertolucci, F., Raabe, T., Zars, T., & Heisenberg, M. (2004). The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. Journal of Neuroscience, 24, 9745–9751. doi:10.1523/JNEUROSCI.3211-04.2004
  • Qin, H., Cressy, M., Li, W., Coravos, J.S., Izzi, S.A., & Dubnau, J. (2012). Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila. Current Biology, 22, 608–614. doi:10.1016/j.cub.2012.02.014
  • Ren, Q., Li, H., Wu, Y., Ren, J., & Guo, A. (2012). A GABAergic inhibitory neural circuit regulates visual reversal learning in Drosophila. Journal of Neuroscience, 32, 11524–11538. doi:10.1523/JNEUROSCI.0827-12.2012
  • Riemensperger, T., Voller, T., Stock, P., Buchner, E., & Fiala, A. (2005). Punishment prediction by dopaminergic neurons in Drosophila. Current Biology, 15, 1953–1960. doi:10.1016/j.cub.2005.09.042
  • Rolls, M.M., Satoh, D., Clyne, P.J., Henner, A.L., Uemura, T., & Doe, C.Q. (2007). Polarity and intracellular compartmentalization of Drosophila neurons. Neural Development, 2, 7. doi:10.1186/1749-8104-2-7
  • Rozenfeld, E., Lerner, H., & Parnas, M. (2019). Muscarinic modulation of antennal lobe GABAergic local neurons shapes odor coding and behavior. Cell Reports, 29, 3253–3265. e3254. doi:10.1016/j.celrep.2019.10.125
  • Scheunemann, L., Jost, E., Richlitzki, A., Day, J.P., Sebastian, S., Thum, A.S., … Schwarzel, M. (2012). Consolidated and labile odor memory are separately encoded within the Drosophila brain. The Journal of Neuroscience, 32, 17163–17171. doi:10.1523/JNEUROSCI.3286-12.2012
  • Scheunemann, L., Placais, P.Y., Dromard, Y., Schwarzel, M., & Preat, T. (2018). Dunce phosphodiesterase acts as a checkpoint for drosophila long-term memory in a pair of serotonergic neurons. Neuron, 98, 350–365. doi:10.1016/j.neuron.2018.03.032
  • Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Voller, T., Erbguth, K., … Buchner, E. (2006). Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Current Biology, 16, 1741–1747. doi:10.1016/j.cub.2006.07.023
  • Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., & Heisenberg, M. (2003). Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. Journal of Neuroscience, 23, 10495–10502. doi:10.1523/JNEUROSCI.23-33-10495.2003
  • Sejourne, J., Placais, P.Y., Aso, Y., Siwanowicz, I., Trannoy, S., Thoma, V., … Ito, K. (2011). Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila. Nature Neuroscience, 14, 903–U129. doi:10.1038/nn.2846
  • Shih, M.F.M., Davis, F.P., Henry, G.L., & Dubnau, J. (2019). Nuclear Transcriptomes of the Seven Neuronal Cell Types That Constitute the Drosophila Mushroom Bodies. Genes, Genomes, Genetics, 9, 81–94. doi:10.1534/g3.118.200726
  • Shuai, Y.C., Hirokawa, A., Ai, Y.L., Zhang, M., Li, W.H., & Zhong, Y. (2015). Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory. Proceedings of the National Academy of Sciences, 112, E6663–E6672. doi:10.1073/pnas.1512792112
  • Shyu, W.H., Lee, W.P., Chiang, M.H., Chang, C.C., Fu, T.F., Chiang, H.C., … Wu, C.L. (2019). Electrical synapses between mushroom body neurons are critical for consolidated memory retrieval in Drosophila. PLoS Genetics, 15, e1008153. doi:10.1371/journal.pgen.1008153
  • Silva, B., Molina-Fernandez, C., Ugalde, M.B., Tognarelli, E.I., Angel, C., & Campusano, J.M. (2015). Muscarinic ACh receptors contribute to aversive olfactory learning in Drosophila. Neural Plasticity, 2015, 1–10. doi:10.1155/2015/658918
  • Skoulakis, E.M., & Davis, R.L. (1996). Olfactory learning deficits in mutants for leonardo, a Drosophila gene encoding a 14-3-3 protein. Neuron, 17, 931–944. doi:10.1016/S0896-6273(00)80224-X
  • Skoulakis, E.M., Kalderon, D., & Davis, R.L. (1993). Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron, 11, 197–208. doi:10.1016/0896-6273(93)90178-T
  • Su, C.Y., Menuz, K., & Carlson, J.R. (2009). Olfactory perception: receptors, cells, and circuits. Cell, 139, 45–59. doi:10.1016/j.cell.2009.09.015
  • Takemura, S.Y., Aso, Y., Hige, T., Wong, A., Lu, Z., Xu, C.S., … Parag, T. (2017). A connectome of a learning and memory center in the adult Drosophila brain. Elife, 6, pii: e26975. doi:10.7554/eLife.26975
  • Tan, Y., Yu, D., Pletting, J., & Davis, R.L. (2010). Gilgamesh is required for rutabaga-independent olfactory learning in Drosophila. Neuron, 67, 810–820. doi:10.1016/j.neuron.2010.08.020
  • Tanaka, N.K., Tanimoto, H., & Ito, K. (2008). Neuronal assemblies of the Drosophila mushroom body. Journal of Comparative Neurology, 508, 711–755. doi:10.1002/cne.21692
  • Tempel, B.L., Livingstone, M.S., & Quinn, W.G. (1984). Mutations in the dopa decarboxylase gene affect learning in Drosophila. Proceedings of the National Academy of Sciences, 81, 3577–3581. doi:10.1073/pnas.81.11.3577
  • Tomchik, S.M., & Davis, R.L. (2009). Dynamics of learning-related cAMP signaling and stimulus integration in the Drosophila olfactory pathway. Neuron, 64, 510–521. doi:10.1016/j.neuron.2009.09.029
  • Tomchik, S.M., & Davis, R.L. (2013). Memory research through four eras: Genetic, molecular biology, neuroanatomy, and systems neuroscience. In R. Menzel & P. Benjamin (Eds.), Invertebrate learning and memory (pp. 359–377). London: Elsevier.
  • Tsao, C.H., Chen, C.C., Lin, C.H., Yang, H.Y., & Lin, S. (2018). Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior. Elife, 7, pii: e35264. doi:10.7554/eLife.35264
  • Tully, T., & Quinn, W.G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. Journal of Comparative Physiology A, 157, 263–277. doi:10.1007/BF01350033
  • Turner, G.C., Bazhenov, M., & Laurent, G. (2008). Olfactory representations by Drosophila mushroom body neurons. Journal of Neurophysiology, 99, 734–746. doi:10.1152/jn.01283.2007
  • Ueno, K., Naganos, S., Hirano, Y., Horiuchi, J., & Saitoe, M. (2013). Long-term enhancement of synaptic transmission between antennal lobe and mushroom body in cultured Drosophila brain. The Journal of Physiology, 591, 287–302. doi:10.1113/jphysiol.2012.242909
  • Ueno, K., Suzuki, E., Naganos, S., Ofusa, K., Horiuchi, J., & Saitoe, M. (2017). Coincident postsynaptic activity gates presynaptic dopamine release to induce plasticity in Drosophila mushroom bodies. Elife, 6, pii: e21076. doi:10.7554/eLife.21076
  • Vogt, K., Schnaitmann, C., Dylla, K.V., Knapek, S., Aso, Y., Rubin, G.M., & Tanimoto, H. (2014). Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. Elife, 3, e02395. doi:10.7554/eLife.02395
  • Waddell, S., & Quinn, W.G. (2001). Flies, genes, and learning. Annual Review of Neuroscience, 24, 1283–1309. doi:10.1146/annurev.neuro.24.1.1283
  • Wang, Y., Mamiya, A., Chiang, A.S., & Zhong, Y. (2008). Imaging of an early memory trace in the Drosophila mushroom body. Journal of Neuroscience, 28, 4368–4376. doi:10.1523/JNEUROSCI.2958-07.2008
  • Widmer, Y.F., Fritsch, C., Jungo, M.M., Almeida, S., Egger, B., & Sprecher, S.G. (2018). Multiple neurons encode CrebB dependent appetitive long-term memory in the mushroom body circuit. Elife, 7, e39196. doi:10.7554/eLife.39196
  • Wolf, R., Wittig, T., Liu, L., Wustmann, G., Eyding, D., & Heisenberg, M. (1998). Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning. Learning & Memory, 5, 166–178.
  • Wu, C.L., Shih, M.F., Lee, P.T., & Chiang, A.S. (2013). An octopamine-mushroom body circuit modulates the formation of anesthesia-resistant memory in Drosophila. Current Biology, 23, 2346–2354. doi:10.1016/j.cub.2013.09.056
  • Yagi, R., Mabuchi, Y., Mizunami, M., & Tanaka, N.K. (2016). Convergence of multimodal sensory pathways to the mushroom body calyx in Drosophila melanogaster. Scientific Reports, 6, 29481. doi:10.1038/srep29481
  • Yamagata, N., Hiroi, M., Kondo, S., Abe, A., & Tanimoto, H. (2016). Suppression of dopamine neurons mediates reward. PLoS Biology, 14, e1002586. doi:10.1371/journal.pbio.1002586
  • Yamagata, N., Ichinose, T., Aso, Y., Placais, P.Y., Friedrich, A.B., Sima, R.J., … Tanimoto, H. (2015). Distinct dopamine neurons mediate reward signals for short- and long-term memories. Proceedings of the National Academy of Sciences, 112, 578–583. doi:10.1073/pnas.1421930112
  • Yamazaki, D., Hiroi, M., Abe, T., Shimizu, K., Minami-Ohtsubo, M., Maeyama, Y., … Tabata, T. (2018). Two parallel pathways assign opposing odor valences during Drosophila memory formation. Cell Reports, 22, 2346–2358. doi:10.1016/j.celrep.2018.02.012
  • Yin, J.C., Wallach, J.S., Wilder, E.L., Klingensmith, J., Dang, D., Perrimon, N., … Quinn, W.G. (1995). A Drosophila CREB/CREM homolog encodes multiple isoforms, including a cyclic AMP-dependent protein kinase-responsive transcriptional activator and antagonist. Molecular and Cellular Biology, 15, 5123–5130. doi:10.1128/MCB.15.9.5123
  • Yu, D., Akalal, D.B., & Davis, R.L. (2006). Drosophila alpha/beta mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron, 52, 845–855. doi:10.1016/j.neuron.2006.10.030
  • Yu, D., Keene, A.C., Srivatsan, A., Waddell, S., & Davis, R.L. (2005). Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning. Cell, 123, 945–957. doi:10.1016/j.cell.2005.09.037
  • Yu, D., Ponomarev, A., & Davis, R.L. (2004). Altered representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment. Neuron, 42, 437–449. doi:10.1016/S0896-6273(04)00217-X
  • Yu, J.Y., Kanai, M.I., Demir, E., Jefferis, G.S.X.E., & Dickson, B.J. (2010). Cellular organization of the neural circuit that drives drosophila courtship behavior. Current Biology, 20, 1602–1614. doi:10.1016/j.cub.2010.08.025
  • Zars, T. (2010). Short-term memories in Drosophila are governed by general and specific genetic systems. Learning & Memory, 17, 246–251. doi:10.1101/lm.1706110
  • Zars, T., Fischer, M., Schulz, R., & Heisenberg, M. (2000a). Localization of a short-term memory in Drosophila. Science, 288, 672–675. doi:10.1126/science.288.5466.672
  • Zars, T., Wolf, R., Davis, R., & Heisenberg, M. (2000b). Tissue-specific expression of a type I adenylyl cyclase rescues the rutabaga mutant memory defect: in search of the engram. Learning and Memory, 7, 18–31. doi:10.1101/lm.7.1.18
  • Zhang, J., Tanenhaus, A.K., Davis, J.C., Hanlon, B.M., & Yin, J.C. (2015). Spatio-temporal in vivo recording of dCREB2 dynamics in Drosophila long-term memory processing. Neurobiol Learn Mem, 118, 80–88. doi:10.1016/j.nlm.2014.11.010
  • Zhang, S., & Roman, G. (2013). Presynaptic inhibition of gamma lobe neurons is required for olfactory learning in Drosophila. Current Biology, 23, 2519–2527. doi:10.1016/j.cub.2013.10.043
  • Zhao, X.L., Lenek, D., Dag, U., Dickson, B.J., & Keleman, K. (2018). Persistent activity in a recurrent circuit underlies courtship memory in Drosophila. Elife, 7, pii: e31425. doi:10.7554/eLife.31425
  • Zheng, Z., Lauritzen, J.S., Perlman, E., Robinson, C.G., Nichols, M., Milkie, D., … Sharifi, N. (2018). A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell, 174, 730–743. doi:10.1016/j.cell.2018.06.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.