362
Views
2
CrossRef citations to date
0
Altmetric
Perspectives

Studying neural circuits of decision-making in Drosophila larva

ORCID Icon
Pages 162-170 | Received 22 Aug 2019, Accepted 18 Jan 2020, Published online: 13 Feb 2020

References

  • Adams, G.K., Watson, K.K., Pearson, J., & Platt, M.L. (2012). Neuroethology of decision-making. Current Opinion in Neurobiology, 22, 982–989. doi:10.1016/j.conb.2012.07.009
  • Alcaraz, F., Marchand, A.R., Vidal, E., Guillou, A., Faugère, A., Coutureau, E., & Wolff, M. (2015). Flexible use of predictive cues beyond the orbitofrontal cortex: role of the submedius thalamic nucleus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35, 13183–13193. doi:10.1523/JNEUROSCI.1237-15.2015
  • Aleman-Meza, B., Jung, S.-K., & Zhong, W. (2015). An automated system for quantitative analysis of Drosophila larval locomotion. BMC Developmental Biology, 15, 11. doi:10.1186/s12861-015-0062-0
  • Baca, S.M., Marin-Burgin, A., Wagenaar, D.A., & Kristan, W.B. Jr. (2008). Widespread inhibition proportional to excitation controls the gain of a leech behavioral circuit. Neuron, 57, 276–289. doi:10.1016/j.neuron.2007.11.028
  • Barker, A.J., & Baier, H. (2015). Sensorimotor decision making in the zebrafish tectum. Current Biology, 25, 2804–2814. doi:10.1016/j.cub.2015.09.055
  • Bjordal, M., Arquier, N., Kniazeff, J., Pin, J.P., & Léopold, P. (2014). Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell, 156, 510–521. doi:10.1016/j.cell.2013.12.024
  • Braganza, O., & Beck, H. (2018). The circuit motif as a conceptual tool for multilevel neuroscience. Trends in Neurosciences, 41, 128–136. doi:10.1016/j.tins.2018.01.002
  • Burgos, A., Honjo, K., Ohyama, T., Qian, C.S., Shin, G. J-e., Gohl, D.M., … Grueber, W.B. (2018). Nociceptive interneurons control modular motor pathways to promote escape behavior in Drosophila. eLife, 7, 1557. doi:10.7554/eLife.26016
  • Cisek, P. (2007). Cortical mechanisms of action selection: the affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 1585–1599. doi:10.1098/rstb.2007.2054
  • Cisek, P., & Kalaska, J.F. (2010). Neural Mechanisms for Interacting with a World Full of Action Choices. Annual Review of Neuroscience, 33, 269–298. doi:10.1146/annurev.neuro.051508.135409
  • Constantinople, C.M., Piet, A.T., & Brody, C.D. (2019). An analysis of decision under risk in rats. Current Biology, 29, 2066–2074.e5. doi:10.1016/j.cub.2019.05.013
  • Eichler, K., Li, F., Litwin-Kumar, A., Park, Y., Andrade, I., Schneider-Mizell, C.M., … Cardona, A. (2017). The complete connectome of a learning and memory centre in an insect brain. Nature, 548, 175–182. doi:10.1038/nature23455
  • Eschbach, C., Fushiki, A., Winding, M., Schneider-Mizell, C.M., Shao, M., & Arruda, R. (2019). Multilevel feedback architecture for adaptive regulation of learning in the insect brain. bioRxiv, 13, 1557–1544. doi:10.1101/649731
  • Faumont, S., Lindsay, T.H., & Lockery, S.R. (2012). Neuronal microcircuits for decision making in C. elegans. Current Opinion in Neurobiology, 22, 580–591. doi:10.1016/j.conb.2012.05.005
  • Fishilevich, E., Domingos, A.I., Asahina, K., Naef, F., Vosshall, L.B., & Louis, M. (2005). Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curbio, 15, 2086–2096. doi:10.1016/j.cub.2005.11.016
  • Fushiki, A., Zwart, M.F., Kohsaka, H., Fetter, R.D., Cardona, A., Nose, A., & Griffith, L.C. (2016). A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. eLife, 5, e13253. doi:10.7554/eLife.13253
  • Gaudry, Q., & Kristan, W.B. (2009). Behavioral choice by presynaptic inhibition of tactile sensory terminals. Nature Publishing Group, 12, 1450–1457. doi:10.1038/nn.2400
  • Gepner, R., Mihovilovic Skanata, M., Bernat, N.M., Kaplow, M., & Gershow, M. (2015). Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration. eLife, 4, e06229. doi:10.7554/eLife.06229
  • Gershow, M., Berck, M., Mathew, D., Luo, L., Kane, E.A., Carlson, J.R., & Samuel, A.D.T. (2012). Controlling airborne cues to study small animal navigation. Nature Methods, 9, 290–296. doi:10.1038/nmeth.1853
  • Gillette, R., & Brown, J.W. (2015). The sea slug, Pleurobranchaea californica: a signpost species in the evolution of complex nervous systems and behavior. Integrative and Comparative Biology, 55, 1058–1069.
  • Glimcher, P.W. (2004). Decisions, uncertainty, and the brain. Cambridge, MA: MIT Press.
  • Glimcher, P.W., & Rustichini, A. (2004). Neuroeconomics: the consilience of brain and decision. Science, 306, 447–452. doi:10.1126/science.1102566
  • Goddard, C.A., Mysore, S.P., Bryant, A.S., Huguenard, J.R., & Knudsen, E.I. (2014). Spatially reciprocal inhibition of inhibition within a stimulus selection network in the avian midbrain. PloS One, 9, e85865. doi:10.1371/journal.pone.0085865
  • Gold, J.I., & Shadlen, M.N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535–574. doi:10.1146/annurev.neuro.29.051605.113038
  • Gomez-Marin, A., Partoune, N., Stephens, G.J., Louis, M., & Brembs, B. (2012). Automated tracking of animal posture and movement during exploration and sensory orientation behaviors. PloS One, 7, e41642. doi:10.1371/journal.pone.0041642
  • Gomez-Marin, A., Stephens, G.J., & Louis, M. (2011). Active sampling and decision making in Drosophila chemotaxis. Nature Communications, 2, 441. doi:10.1038/ncomms1455
  • Gong, Z., Liu, J., Guo, C., Zhou, Y., Teng, Y., & Liu, L. (2010). Two pairs of neurons in the central brain control Drosophila innate light preference. Science, 330, 499–502. doi:10.1126/science.1195993
  • Gorostiza, E.A. (2018). Does cognition have a role in plasticity of “innate behavior?” a perspective from Drosophila. Frontiers in Psychology, 9, 1502. doi:10.3389/fpsyg.2018.01502
  • He, L., Gulyanon, S., Mihovilovic Skanata, M., Karagyozov, D., Heckscher, E.S., Krieg, M., … Tracey, W.D. (2019). Direction selectivity in Drosophila proprioceptors requires the mechanosensory channel Tmc. Current Biology, 29, 945–956.e3. doi:10.1016/j.cub.2019.02.025
  • Heckscher, E.S., Lockery, S.R., & Doe, C.Q. (2012). Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 12460–12471. doi:10.1523/JNEUROSCI.0222-12.2012
  • Heckscher, E.S., Zarin, A.A., Faumont, S., Clark, M.Q., Manning, L., Fushiki, A., … Doe, C.Q. (2015). Even-skipped(+) interneurons are core components of a sensorimotor circuit that maintains left-right symmetric muscle contraction amplitude. Neuron, 88, 314–329. doi:10.1016/j.neuron.2015.09.009
  • Hung, Y.-S., & Stopfer, M. (2018). Decision making: how fruit flies integrate olfactory evidence. Current Biology, 28, R757–R759. doi:10.1016/j.cub.2018.05.065
  • Itskov, P.M., & Ribeiro, C. (2013). The dilemmas of the gourmet fly: the molecular and neuronal mechanisms of feeding and nutrient decision making in Drosophila. Frontiers in Neuroscience, 7, 12. doi:10.3389/fnins.2013.00012
  • Jarrell, T.A., Wang, Y., Bloniarz, A.E., Brittin, C.A., Xu, M., Thomson, J.N., … Emmons, S.W. (2012). The connectome of a decision-making neural network. Science, 337, 437–444. doi:10.1126/science.1221762
  • Jovanic, T., Schneider-Mizell, C.M., Shao, M., Masson, J.-B., Denisov, G., Fetter, R.D., … Zlatic, M. (2016). Competitive disinhibition mediates behavioral choice and sequences in Drosophila. Cell, 167, 858–870.e19. doi:10.1016/j.cell.2016.09.009
  • Jovanic, T., Winding, M., Cardona, A., Truman, J.W., Gershow, M., & Zlatic, M. (2019). Neural substrates of Drosophila larval anemotaxis. Current Biology, 29, 554–566.e4. doi:10.1016/j.cub.2019.01.009
  • Kabra, M., Robie, A.A., Rivera-Alba, M., Branson, S., & Branson, K. (2013). JAABA: interactive machine learning for automatic annotation of animal behavior. Nature Methods, 10, 64–67. doi:10.1038/nmeth.2281
  • Kane, E.A., Gershow, M., Afonso, B., Larderet, I., Klein, M., Carter, A.R., … Samuel, A.D.T. (2013). Sensorimotor structure of Drosophila larva phototaxis. Proceedings of the National Academy of Sciences of the United States of America, 110, E3868–77. doi:10.1073/pnas.1215295110
  • Karagyozov, D., Mihovilovic Skanata, M., Lesar, A., & Gershow, M. (2018). Recording neural activity in unrestrained animals with three-dimensional tracking two-photon microscopy. Cell Reports, 25, 1371–1383.e10. doi:10.1016/j.celrep.2018.10.013
  • Kim, D., Alvarez, M., Lechuga, L.M., & Louis, M. (2017). Species-specific modulation of food-search behavior by respiration and chemosensation in Drosophila larvae. eLife, 6, 356. doi:10.7554/eLife.27057
  • Klein, M., Afonso, B., Vonner, A.J., Hernandez-Nunez, L., Berck, M., Tabone, C.J., … Samuel, A.D.T. (2015). Sensory determinants of behavioral dynamics in Drosophila thermotaxis. Proceedings of the National Academy of Sciences of the United States of America, 112, E220–9. doi:10.1073/pnas.1416212112
  • Koseki, N., Mori, S., Suzuki, S., Tonooka, Y., Kosugi, S., Miyakawa, H., & Morimoto, T. (2016). Individual differences in sensory responses influence decision making by Drosophila melanogaster larvae on exposure to contradictory cues. Journal of Neurogenetics, 30, 288–296. doi:10.1080/01677063.2016.1202949
  • Kovac, M.P., & Davis, W.J. (1977). Behavioral choice: neural mechanisms in Pleurobranchaea. Science, 198, 632–634. doi:10.1126/science.918659
  • Koyama, M., Minale, F., Shum, J., Nishimura, N., Schaffer, C.B., & Fetcho, J.R. (2016). A circuit motif in the zebrafish hindbrain for a two alternative behavioral choice to turn left or right. eLife, 5, 451. doi:10.7554/eLife.16808
  • Koyama, M., & Pujala, A. (2018). Mutual inhibition of lateral inhibition: a network motif for an elementary computation in the brain. Current Opinion in Neurobiology, 49, 69–74. doi:10.1016/j.conb.2017.12.019
  • Kristan, W.B. (2008). Neuronal decision-making circuits. Current Biology, 18, R928–R932. doi:10.1016/j.cub.2008.07.081
  • Kristan, W.B. Jr. (2012). Decision points: the factors influencing the decision to feed in the medicinal leech. Frontiers in Neuroscience, 6, 101. doi: 10.3389/fnins.2012.00101/abstract
  • Kudow, N., Miura, D., Schleyer, M., Toshima, N., Gerber, B., & Tanimura, T. (2017). Preference for and learning of amino acids in larval Drosophila. Biology Open, 6, 365–369. doi:10.1242/bio.020412
  • Kupfermann, I., & Weiss, K.R. (2001). Motor program selection in simple model systems. Current Opinion in Neurobiology, 11, 673–677. doi:10.1016/S0959-4388(01)00267-7
  • Kvon, E.Z., Kazmar, T., Stampfel, G., Yáñez-Cuna, J.O., Pagani, M., Schernhuber, K., … Stark, A. (2014). Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature, 512, 91–95. doi:10.1038/nature13395
  • Lemon, W.C., Pulver, S.R., Höckendorf, B., McDole, K., Branson, K., Freeman, J., & Keller, P.J. (2015). Whole-central nervous system functional imaging in larval Drosophila. Nature Communications, 6, 7924–7916. doi:10.1038/ncomms8924
  • Li, H.-H., Kroll, J.R., Lennox, S.M., Ogundeyi, O., Jeter, J., Depasquale, G., & Truman, J.W. (2014). A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. Cell Reports, 8, 897–908. doi:10.1016/j.celrep.2014.06.065
  • Louis, M., Huber, T., Benton, R., Sakmar, T.P., & Vosshall, L.B. (2008). Bilateral olfactory sensory input enhances chemotaxis behavior. Nature Neuroscience, 11, 187–199. doi:10.1038/nn2031
  • Luo, L., Gershow, M., Rosenzweig, M., Kang, K., Fang-Yen, C., Garrity, P.A., & Samuel, A.D.T. (2010). Navigational decision making in Drosophila thermotaxis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30, 4261–4272. doi:10.1523/JNEUROSCI.4090-09.2010
  • Maass, W. (2000). On the computational power of winner-take-all. Neural Computation, 12, 2519–2535. doi:10.1162/089976600300014827
  • Masson, J.-B., Laurent, F., Cardona, A., Barre, C., Skatchkovsky, N., & Truman, J.W. (2020). Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila. Plos Genetics. (in press)
  • Merritt, D.J., & Whitington, P.M. (1995). Central projections of sensory neurons in the Drosophila embryo correlate with sensory modality, soma position, and proneural gene function. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 15, 1755–1767. doi:10.1523/JNEUROSCI.15-03-01755.1995
  • Miller, G.A., Galanter, E., & Pribram, K.H. (1960). Plans and the structure of behavior. New York: Holt, Rinehart and Winston, Inc.
  • Mink, J.W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425. doi:10.1016/S0301-0082(96)00042-1
  • Ohyama, T., Jovanic, T., Denisov, G., Dang, T.C., Hoffmann, D., Kerr, R.A., & Zlatic, M. (2013). High-throughput analysis of stimulus-evoked behaviors in Drosophila larva reveals multiple modality-specific escape strategies. PloS One, 8, e71706. doi:10.1371/journal.pone.0071706
  • Ohyama, T., Schneider-Mizell, C.M., Fetter, R.D., Aleman, J.V., Franconville, R., Rivera-Alba, M., … Zlatic, M. (2015). A multilevel multimodal circuit enhances action selection in Drosophila. Nature, 520, 633–639. doi:10.1038/nature14297
  • Palmer, C.R., & Kristan, W.B. (2011). Contextual modulation of behavioral choice. Current Opinion in Neurobiology, 21, 520–526. doi:10.1016/j.conb.2011.05.003
  • Pearson, J.M., Watson, K.K., & Platt, M.L. (2014). Decision making: the neuroethological turn. Neuron, 82, 950–965. doi:10.1016/j.neuron.2014.04.037
  • Pfeiffer, B.D., Jenett, A., Hammonds, A.S., Ngo, T.-T.B., Misra, S., Murphy, C., … Rubin, G.M. (2008). Tools for neuroanatomy and neurogenetics in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 105, 9715–9720. doi:10.1073/pnas.0803697105
  • Pfeiffer, B.D., Ngo, T.-T.B., Hibbard, K.L., Murphy, C., Jenett, A., Truman, J.W., & Rubin, G.M. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics, 186, 735–755. doi:10.1534/genetics.110.119917
  • Prescott, T.J. (2007). Forced moves or good tricks in design space?Landmarks in the evolution of neural mechanisms for action selection. Adaptive Behavior, 15, 9–31. doi:10.1177/1059712306076252
  • Pulver, S.R., Bayley, T.G., Taylor, A.L., Berni, J., Bate, M., & Hedwig, B. (2015). Imaging fictive locomotor patterns in larval Drosophila. Journal of Neurophysiology, 114, 2564–2577. doi:10.1152/jn.00731.2015
  • Qian, C.S., Kaplow, M., Lee, J.K., & Grueber, W.B. (2018). Diversity of internal sensory neuron axon projection patterns is controlled by the POU-domain protein Pdm3 in Drosophila larvae. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 38, 2081–2093. doi:10.1523/JNEUROSCI.2125-17.2018
  • Redgrave, P., Prescott, T.J., & Gurney, K. (1999). The basal ganglia: a vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023. doi:10.1016/S0306-4522(98)00319-4
  • Redgrave, P., Vautrelle, N., & Reynolds, J.N.J. (2011). Functional properties of the basal ganglia’s re-entrant loop architecture: selection and reinforcement. Nsc, 198, 138–151. doi:10.1016/j.neuroscience.2011.07.060
  • Reyn, V. C.R., Breads, P., Peek, M.Y., Zheng, G.Z., Williamson, W.R., & Yee, A.L. (2014). A spike-timing mechanism for action selection. Nature Neuroscience, 17, 962–970. doi:10.1038/nn.3741
  • Robertson, J.L., Tsubouchi, A., & Tracey, W.D. (2013). Larval defense against attack from parasitoid wasps requires nociceptive neurons. PloS One, 8, e78704. doi:10.1371/journal.pone.0078704
  • Robie, A.A., Hirokawa, J., Edwards, A.W., Umayam, L.A., Lee, A., Phillips, M.L., … Branson, K. (2017). Mapping the neural substrates of behavior. Cell, 170, 393–406.e28. doi:10.1016/j.cell.2017.06.032
  • Saumweber, T., Rohwedder, A., Schleyer, M., Eichler, K., Chen, Y-c., Aso, Y., … Gerber, B. (2018). Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nature Communications, 9, 1104. doi:10.1038/s41467-018-03130-1
  • Schleyer, M., Diegelmann, S., Michels, B., Saumweber, T., & Gerber, B. (2013). Decision making in larval Drosophila. Handbook of Behavioral Neuroscience, 22, 41–55. doi:10.1016/B978-0-12-415823-8.00005-8
  • Schleyer, M., Fendt, M., Schuller, S., & Gerber, B. (2018). Associative learning of stimuli paired and unpaired with reinforcement: evaluating evidence from maggots, flies, bees, and rats. Frontiers in Psychology, 9, 1494. doi:10.3389/fpsyg.2018.01494
  • Schneider-Mizell, C.M., Gerhard, S., Longair, M., Kazimiers, T., Li, F., Zwart, M.F., … Cardona, A. (2016). Quantitative neuroanatomy for connectomics in Drosophila. eLife, 5, 1133. doi:10.7554/eLife.12059
  • Schulze, A., Gomez-Marin, A., Rajendran, V.G., Lott, G., Musy, M., Ahammad, P., … Louis, M. (2015). Dynamical feature extraction at the sensory periphery guides chemotaxis. eLife, 4, 1129. doi:10.7554/eLife.06694
  • Seeds, A.M., Ravbar, P., Chung, P., Hampel, S., Midgley, F.M., Mensh, B.D., & Simpson, J.H. (2014). A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila. eLife 3, e02951.
  • Simpson, J.H. (2009). Mapping and manipulating neural circuits in the fly brain. Advances in Genetics, 65, 79–143. doi:10.1016/S0065-2660(09)65003-3
  • Simpson, J.H., & Looger, L.L. (2018). Functional imaging and optogenetics in Drosophila. Genetics, 208, 1291–1309. doi:10.1534/genetics.117.300228
  • Sivanantharajah, L., & Zhang, B. (2015). Current techniques for high-resolution mapping of behavioral circuits in Drosophila. Journal of Comparative Physiology. a, Neuroethology, Sensory, Neural, and Behavioral Physiology, 201, 895–909. doi:10.1007/s00359-015-1010-y
  • Slater, G., Levy, P., Chan, K.L.A., & Larsen, C. (2015). A central neural pathway controlling odor tracking in Drosophila. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35, 1831–1848. doi:10.1523/JNEUROSCI.2331-14.2015
  • Sprecher, S.G., Cardona, A., & Hartenstein, V. (2011). The Drosophila larval visual system: high-resolution analysis of a simple visual neuropil. Developmental Biology, 358, 33–43. doi:10.1016/j.ydbio.2011.07.006
  • Surendran, S., Hückesfeld, S., Wäschle, B., & Pankratz, M.J. (2017). Pathogen-induced food evasion behavior in Drosophila larvae. The Journal of Experimental Biology, 220, 1774–1780. doi:10.1242/jeb.153395
  • Takagi, S., Cocanougher, B.T., Niki, S., Miyamoto, D., Kohsaka, H., Kazama, H., … Nose, A. (2017). Divergent connectivity of homologous command-like neurons mediates segment-specific touch responses in Drosophila. Neuron, 96, 1373–1387.e6. doi:10.1016/j.neuron.2017.10.030
  • Tastekin, I., Khandelwal, A., Tadres, D., Fessner, N.D., Truman, J.W., Zlatic, M., … Louis, M. (2018). Sensorimotor pathway controlling stopping behavior during chemotaxis in the Drosophila melanogaster larva. eLife, 7, 2452. doi:10.7554/eLife.38740
  • Tastekin, I., Riedl, J., Schilling-Kurz, V., Gomez-Marin, A., Truman, J.W., & Louis, M. (2015). Role of the subesophageal zone in sensorimotor control of orientation in Drosophila larva. Current Biology, 25, 1448–1460. doi:10.1016/j.cub.2015.04.016
  • Triphan, T., Nern, A., Roberts, S.F., Korff, W., Naiman, D.Q., & Strauss, R. (2016). A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons. Scientific Reports, 6. Article number: 27000. doi:10.1038/srep27000
  • Tsubouchi, A., Caldwell, J.C., & Tracey, W.D. (2012). Dendritic filopodia, ripped pocket, NOMPC, and NMDARs contribute to the sense of touch in Drosophila larvae. Current Biology, 22, 2124–2134. doi:10.1016/j.cub.2012.09.019
  • Turner, H.N., Armengol, K., Patel, A.A., Himmel, N.J., Sullivan, L., Iyer, S.C., … Cox, D.N., et al. (2016). The TRP channels Pkd2, NompC, and Trpm act in cold-sensing neurons to mediate unique aversive behaviors to noxious cold in Drosophila. Current Biology, 26, 3116–3128. doi:10.1016/j.cub.2016.09.038
  • Wang, X.-J. (2008). Decision making in recurrent neuronal circuits. Neuron, 60, 215–234. doi:10.1016/j.neuron.2008.09.034
  • Xiang, Y., Yuan, Q., Vogt, N., Looger, L.L., Jan, L.Y., & Jan, Y.-N. (2010). Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature, 468, 921–926. doi:10.1038/nature09576
  • Yan, Z., Zhang, W., He, Y., Gorczyca, D., Xiang, Y., Cheng, L.E., … Jan, Y.N., et al. (2013). Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature, 493, 221–225. doi:10.1038/nature11685
  • Yao, Z., Macara, A.M., Lelito, K.R., Minosyan, T.Y., & Shafer, O.T. (2012). Analysis of functional neuronal connectivity in the Drosophila brain. Journal of Neurophysiology, 108, 684–696. doi:10.1152/jn.00110.2012
  • Zarin, A.A., Mark, B., Cardona, A., Litwin-Kumar, A., & Doe, C.Q. (2019b). A multilayer circuit architecture for the generation of distinct locomotor behaviors in Drosophila. eLife, 8, e51781. doi:10.7554/eLife.51781
  • Zhang, W., Yan, Z., Jan, L.Y., & Jan, Y.-N. (2013). Sound response mediated by the TRP channels NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of Drosophila larvae. Proceedings of the National Academy of Sciences of the United States of America, 110, 13612–13617. doi:10.1073/pnas.1312477110
  • Zhao, W., Gong, C., Ouyang, Z., Wang, P., Wang, J., Zhou, P., … Gong, Z., et al. (2017). Turns with multiple and single head cast mediate Drosophila larval light avoidance. PloS One, 12, e0181193. doi:10.1371/journal.pone.0181193
  • Zhao, W., Zhou, P., Gong, C., Ouyang, Z., Wang, J., Zheng, N., & Gong, Z. (2019). A disinhibitory mechanism biases Drosophila innate light preference. Nature Communications, 10, 124. doi:10.1038/s41467-018-07929-w
  • Zwart, M.F., Pulver, S.R., Truman, J.W., Fushiki, A., Fetter, R.D., Cardona, A., & Landgraf, M. (2016). Selective inhibition mediates the sequential recruitment of motor pools. Neuron, 91, 615–628. doi:10.1016/j.neuron.2016.06.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.