4,349
Views
13
CrossRef citations to date
0
Altmetric
Section 2: Nervous system development

A perspective on C. elegans neurodevelopment: from early visionaries to a booming neuroscience research

Pages 259-272 | Received 06 Sep 2020, Accepted 13 Oct 2020, Published online: 14 Jan 2021

References

  • Adler, C.E., Fetter, R.D., & Bargmann, C.I. (2006). UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation. Nature Neuroscience, 9(4), 511–518. doi:10.1038/nn1666
  • Allen, N.J., & Lyons, D.A. (2018). Glia as architects of central nervous system formation and function. Science (New York, N.Y.), 362(6411), 181–185. doi:10.1126/science.aat0473
  • Amruta Vasudevan & Sandhya P. Koushika (2020). Molecular mechanisms governing axonal transport: a C. elegans perspective, Journal of Neurogenetics, DOI: 10.1080/01677063.2020.1823385
  • Andrea Cuentas-Condori & David M. Miller, 3rd (2020). Synaptic remodeling, lessons from C. elegans, Journal of Neurogenetics, DOI: 10.1080/01677063.2020.1802725.
  • Bacaj, T., Tevlin, M., Lu, Y., & Shaham, S. (2008). Glia are essential for sensory organ function in C. elegans. Science (New York, N.Y.).), 322(5902), 744–747. doi:10.1126/science.1163074
  • Bargmann, C.I. (1999). Looking back, looking ahead. Nature Neuroscience, 2(5), 389. doi:10.1038/8049
  • Bargmann, C.I., & Horvitz, H.R. (1991). Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron, 7(5), 729–742. doi:10.1016/0896-6273(91)90276-6
  • Barrière, A., & Bertrand, V. (2020). Neuronal specification in C. elegans: Combining lineage inheritance with intercellular signaling. Journal of Neurogenetics. Advance online publication. doi:10.1080/01677063.2020.1781850
  • Baum, P.D., Guenther, C., Frank, C.A., Pham, B.V., & Garriga, G. (1999). The Caenorhabditis elegans gene ham-2 links Hox patterning to migration of the HSN motor neuron. Genes & Development, 13(4), 472–483. doi:10.1101/gad.13.4.472
  • Bayer, E.A., & Hobert, O. (2018). Past experience shapes sexually dimorphic neuronal wiring through monoaminergic signalling. Nature, 561(7721), 117–138. doi:10.1038/s41586-018-0452-0
  • Bénard, C.Y., Blanchette, C., Recio, J., & Hobert, O. (2012). The secreted immunoglobulin domain proteins ZIG-5 and ZIG-8 cooperate with L1CAM/SAX-7 to maintain nervous system integrity. PLoS Genetics, 8(7), e1002819. doi:10.1371/journal.pgen.1002819
  • Bénard, C.Y., & Hobert, O. (2009). Looking beyond development: Maintaining nervous system architecture. Current Topics in Developmental Biology, 87, 175–194. doi:10.1016/S0070-2153(09)01206-X
  • Bertrand, V., Bisso, P., Poole, R.J., & Hobert, O. (2011). Notch-dependent induction of left/right asymmetry in C. elegans interneurons and motoneurons. Current Biology: CB, 21(14), 1225–1231. doi:10.1016/j.cub.2011.06.016
  • Bhattacharya, A., Aghayeva, U., Berghoff, E.G., & Hobert, O. (2019). Plasticity of the electrical connectome of C. elegans. Cell, 176(5), 1174–1189. doi:10.1016/j.cell.2018.12.024
  • Boulin, T., Pocock, R., & Hobert, O. (2006). A novel Eph receptor-interacting IgSF protein provides C. elegans motoneurons with midline guidepost function . Current Biology: Cb, 16(19), 1871–1883. doi:10.1016/j.cub.2006.08.056
  • Boulin, T., Rapti, G., Briseño-Roa, L., Stigloher, C., Richmond, J.E., Paoletti, P., & Bessereau, J.-L. (2012). Positive modulation of a Cys-loop acetylcholine receptor by an auxiliary transmembrane subunit. Nature Neuroscience, 15(10), 1374–1381. doi:10.1038/nn.3197
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71–94. doi:10.1002/cbic.200300625
  • Bulow, H.E., & Hobert, O. (2004). Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron, 41(5), 723–736. doi:10.1016/S0896-6273(04)00084-4
  • Bülow, H.E., Tjoe, N., Townley, R.A., Didiano, D., van Kuppevelt, T.H., & Hobert, O. (2008). Extracellular sugar modifications provide instructive and cell-specific information for axon-guidance choices. Current Biology: CB, 18(24), 1978–1985. doi:10.1016/j.cub.2008.11.023
  • Burbea, M., Dreier, L., Dittman, J.S., Grunwald, M.E., & Kaplan, J.M. (2002). Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron, 35(1), 107–120. doi:10.1016/S0896-6273(02)00749-3
  • C. elegans sequencing consortium. (1998). Genome sequence of the nematode C. elegans: A platform for investigating biology. The C. elegans Sequencing Consortium. Science, 282(5396), 2012–2018. doi:10.1126/science.282.5396.2012
  • Chalfie, M. (2018). John Sulston (1942–2018). Cell, 173(4), 809–812. doi:10.1016/j.cell.2018.04.024
  • Chalfie, M., Horvitz, H.R., & Sulston, J.E. (1981). Mutations that lead to reiterations in the cell lineages of C. elegans. Cell, 24(1), 59–69. doi:10.1016/0092-8674(81)90501-8
  • Chalfie, M., Sulston, J.E., White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 5(4), 956–964. doi:10.1523/JNEUROSCI.05-04-00956.1985
  • Check, E. (2002). Worm cast in starring role for Nobel prize. Nature, 419(6907), 548–549. doi:10.1038/419548a
  • Chédotal, A., & Richards, L.J. (2010). Wiring the brain: The biology of neuronal guidance. Cold Spring Harbor Perspectives in Biology, 2(6), a001917 doi:10.1101/cshperspect.a001917
  • Chen, C.H., Hsu, H.W., Chang, Y.H., & Pan, C.L. (2019). Adhesive L1CAM-robo signaling aligns growth cone F-actin dynamics to promote axon-dendrite fasciculation in C. elegans. Developmental Cell, 49(3), 490–491. doi:10.1016/j.devcel.2018.10.028
  • Cherra, S.J., Goncharov, A., Boassa, D., Ellisman, M., & Jin, Y. (2020). C. elegans MAGU-2/Mpp5 homolog regulates epidermal phagocytosis and synapse density. Journal of Neurogenetics. Advance online publication. doi:10.1080/01677063.2020.1726915
  • Cherra, S.J., & Jin, Y. (2016). A two-immunoglobulin-domain transmembrane protein mediates an epidermal-neuronal interaction to maintain synapse density. Neuron, 89(2), 325–336. doi:10.1016/j.neuron.2015.12.024
  • Cochella, L., & Hobert, O. (2012). Embryonic priming of a miRNA locus predetermines postmitotic neuronal left/right asymmetry in C. elegans. Cell, 151(6), 1229–1242. doi:10.1016/j.cell.2012.10.049
  • Colavita, A., & Culotti, J.G. (1998). Suppressors of ectopic UNC-5 growth cone steering identify eight genes involved in axon guidance in Caenorhabditis elegans. Developmental Biology, 194(1), 72–85. doi:10.1006/dbio.1997.8790
  • Colón-Ramos, D.A., Margeta, M.A., & Shen, K. (2007). Glia promote local synaptogenesis through UNC-6 (netrin) signaling in C. elegans. Science (New York, N.Y.), 318(5847), 103–106. doi:10.1126/science.1143762
  • Cook, S.J., Jarrell, T.A., Brittin, C.A., Wang, Y., Bloniarz, A.E., Yakovlev, M.A., … Emmons, S.W. (2019). Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature, 571(7763), 63–71. doi:10.1038/s41586-019-1352-7
  • Cordes, S., Frank, C.A., & Garriga, G. (2006). The C. elegans MELK ortholog PIG-1 regulates cell size asymmetry and daughter cell fate in asymmetric neuroblast divisions. Development (Cambridge, England), 133(14), 2747–2756. doi:10.1242/dev.02447
  • Crump, J.G., Zhen, M., Jin, Y., & Bargmann, C.I. (2001). The SAD-1 kinase regulates presynaptic vesicle clustering and axon termination. Neuron, 29(1), 115–129. doi:10.1016/S0896-6273(01)00184-2
  • Cuentas-Condori, A., Mulcahy, B., He, S., Palumbos, S., Zhen, M., & Miller, D.M. (2019). C. elegans neurons have functional dendritic spines. eLife, 8, e47918. doi:10.7554/eLife.47918
  • Culotti, J.G., & Merz, D.C. (1998). DCC and netrins. Current Opinion in Cell Biology, 10(5), 609–613. doi:10.1016/S0955-0674(98)80036-7
  • Dai, Y., Taru, H., Deken, S.L., Grill, B., Ackley, B., Nonet, M.L., & Jin, Y. (2006). SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS. Nature Neuroscience, 9(12), 1479–1487. doi:10.1038/nn1808
  • Demarco, R.S., Struckhoff, E.C., & Lundquist, E.A. (2012). The Rac GTP exchange factor TIAM-1 acts with CDC-42 and the guidance receptor UNC-40/DCC in neuronal protrusion and axon guidance. PLoS Genetics, 8(4), e1002665. doi:10.1371/journal.pgen.1002665
  • Dickinson, D.J., & Goldstein, B. (2016). CRISPR-based methods for Caenorhabditis elegans genome engineering. Genetics, 202(3), 885–901. doi:10.1534/genetics.115.182162
  • Dong, X., Liu, O.W., Howell, A.S., & Shen, K. (2013). An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis. Cell, 155(2), 296–307. doi:10.1016/j.cell.2013.08.059
  • Durbin, R.M. (1987). Studies on the development and organisation of the nervous system of Caenorhabditis elegans. Cambridge: King’s College, University of Cambridge.
  • Eimer, S., Gottschalk, A., Hengartner, M., Horvitz, H.R., Richmond, J., Schafer, W.R., & Bessereau, J.-L. (2007). Regulation of nicotinic receptor trafficking by the transmembrane Golgi protein UNC-50. The EMBO Journal, 26(20), 4313–4323. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17853888 doi:10.1038/sj.emboj.7601858
  • Félix, M.-A., & Nigon, M.V. (2017). History of research on C. elegans and other free-living nematodes as model organisms. WormBook: The Online Review of C. elegans Biology. doi:10.1895/wormbook.1.1
  • Finney, M., Ruvkun, G., & Horvitz, H.R. (1988). The C. elegans cell lineage and differentiation gene unc-86 encodes a protein with a homeodomain and extended similarity to transcription factors. Cell, 55(5), 757–769. doi:10.1016/0092-8674(88)90132-8
  • Forrester, W.C., Dell, M., Perens, E., & Garriga, G. (1999). A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature, 400(6747), 881–885. doi:10.1038/23722
  • Frakes, A.E., Metcalf, M.G., Tronnes, S.U., Bar-Ziv, R., Durieux, J., Gildea, H.K., … Dillin, A. (2020). Four glial cells regulate ER stress resistance and longevity via neuropeptide signaling in C. elegans. Science, 367(6476), 436–440. doi:10.1126/science.aaz6896
  • Frank, C.A., Baum, P.D., & Garriga, G. (2003). HLH-14 is a C. elegans Achaete-Scute protein that promotes neurogenesis through asymmetric cell division. Development (Cambridge, England)), 130(26), 6507–6518. doi:10.1242/dev.00894
  • Fujisawa, K., Wrana, J.L., & Culotti, J.G. (2007). The slit receptor EVA-1 coactivates a SAX-3/Robo mediated guidance signal in C. elegans. Science (New York, N.Y.), 317(5846), 1934–1938. doi:10.1126/science.1144874
  • Fung, W., Wexler, L., & Heiman, M.G. (2020). Cell-type-specific promoters for C. elegans glia. Journal of Neurogenetics. Advance online publication. doi:10.1080/01677063.2020.1781851
  • Gally, C., Eimer, S., Richmond, J.E., & Bessereau, J.-L. (2004). A transmembrane protein required for acetylcholine receptor clustering in Caenorhabditis elegans. Nature, 431(7008), 578–582. doi:10.1038/nature02893
  • Gan, Q., & Watanabe, S. (2018). Synaptic vesicle endocytosis in different model systems. Frontiers in Cellular Neuroscience, 12(, 171. doi:10.3389/fncel.2018.00171
  • Garriga, G., Desai, C., & Horvitz, H.R. (1993). Cell interactions control the direction of outgrowth, branching and fasciculation of the HSN axons of Caenorhabditis elegans. Development (Cambridge, England), 117(3), 1071–1087.
  • Garriga, G., Guenther, C., & Horvitz, H.R. (1993). Migrations of the Caenorhabditis elegans HSNs are regulated by egl-43, a gene encoding two zinc finger proteins. Genes & Development, 7(11), 2097–2109. doi:10.1101/gad.7.11.2097
  • Gendrel, M., Atlas, E.G., & Hobert, O. (2016). A cellular and regulatory map of the GABAergic nervous system of C. elegans. eLife, 5, e17686. doi:10.7554/eLife.17686
  • Gendrel, M., Rapti, G., Richmond, J.E., & Bessereau, J.-L. (2009). A secreted complement-control-related protein ensures acetylcholine receptor clustering. Nature, 461(7266), 992–996. doi:10.1038/nature08430
  • Gitschier, J. (2006). Knight in common armor: An interview with Sir John Sulston. PLoS Genetics, 2(12), e225. doi:10.1371/journal.pgen.0020225
  • Goodman, M.B., & Sengupta, P. (2019). How caenorhabditis elegans senses mechanical stress, temperature, and other physical stimuli. Genetics, 212(1), 25–51. doi:10.1534/genetics.118.300241
  • Grill, B., Bienvenut, W.V., Brown, H.M., Ackley, B.D., Quadroni, M., & Jin, Y. (2007). C. elegans RPM-1 regulates axon termination and synaptogenesis through the Rab GEF GLO-4 and the Rab GTPase GLO-1. Neuron, 55(4), 587–601. doi:10.1016/j.neuron.2007.07.009
  • Grossman, E.N., Giurumescu, C.A., & Chisholm, A.D. (2013). Mechanisms of ephrin receptor protein kinase-independent signaling in amphid axon guidance in Caenorhabditis elegans. Genetics, 195(3), 899–913. doi:10.1534/genetics.113.154393
  • Gujar, M.R., Sundararajan, L., Stricker, A., & Lundquist, E.A. (2018). Control of growth cone polarity, microtubule accumulation, and protrusion by UNC-6/netrin and its receptors in Caenorhabditis elegans. Genetics, 210(1), 235–255. doi:10.1534/genetics.118.301234
  • Hart, M.P., & Hobert, O. (2018). Neurexin controls plasticity of a mature, sexually dimorphic neuron. Nature, 553(7687), 165–170. doi:10.1038/nature25192
  • Hedgecock, E.M., Culotti, J.G., & Hall, D.H. (1990). The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron, 4(1), 61–85. doi:10.1016/0896-6273(90)90444-K
  • Heiman, M.G., & Shaham, S. (2009). DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration. Cell, 137(2), 344–355. doi:10.1016/j.cell.2009.01.057
  • Hirose, T., & Horvitz, H.R. (2013). An Sp1 transcription factor coordinates caspase-dependent and -independent apoptotic pathways. Nature, 500(7462), 354–358. doi:10.1038/nature12329
  • Hobert, O. (2016). Terminal selectors of neuronal identity. Current Topics in Developmental Biology, 116, 455–475. doi:10.1016/bs.ctdb.2015.12.007
  • Hobert, O., Carrera, I., & Stefanakis, N. (2010). The molecular and gene regulatory signature of a neuron. Trends in Neurosciences, 33(10), 435–445. doi:10.1016/j.tins.2010.05.006
  • Hobert, O., & Kratsios, P. (2019). Neuronal identity control by terminal selectors in worms, flies, and chordates. Current Opinion in Neurobiology, 56, 97–105. doi:10.1016/j.conb.2018.12.006
  • Hodgkin, J., Horvitz, H.R., & Brenner, S. (1979). Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics, 91(1), 67–94.
  • Hoerndli, F.J., Wang, R., Mellem, J.E., Kallarackal, A., Brockie, P.J., Thacker, C., … Maricq, A.V. (2015). Neuronal activity and CaMKII regulate kinesin-mediated transport of synaptic AMPARs. Neuron, 86(2), 457–474. doi:10.1016/j.neuron.2015.03.011
  • Horvitz, H.R., Shaham, S., & Hengartner, M.O. (1994). The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harbor Symposia on Quantitative Biology, 59, 377–385. doi:10.1101/sqb.1994.059.01.042
  • Horvitz, H.R., & Sulston, J.E. (1980). Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics, 96(2), 435–454.
  • Hsieh, Y.W., Chang, C., & Chuang, C.F. (2012). The MicroRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans. PLoS Genetics, 8(8), e1002864. doi:10.1371/journal.pgen.1002864
  • Huang, X., Cheng, H.J., Tessier-Lavigne, M., & Jin, Y. (2002). MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion. Neuron, 34(4), 563–576. doi:10.1016/S0896-6273(02)00672-4
  • Hung, W.L., Hwang, C., Gao, S., Liao, E.H., Chitturi, J., Wang, Y., … Zhen, M. (2013). Attenuation of insulin signalling contributes to FSN-1-mediated regulation of synapse development. The EMBO Journal, 32(12), 1745–1760. doi:10.1038/emboj.2013.91
  • Hutter, H. (2003). Extracellular cues and pioneers act together to guide axons in the ventral cord of C. elegans. Development (Cambridge, England), 130(22), 5307–5318. doi:10.1242/dev.00727
  • Ikegami, R., Zheng, H., Ong, S.-H., & Culotti, J. (2004). Integration of semaphorin-2A/MAB-20, ephrin-4, and UNC-129 TGF-beta signaling pathways regulates sorting of distinct sensory rays in C. elegans. Developmental Cell, 6(3), 383–395. doi:10.1016/S1534-5807(04)00057-7
  • Inglis, P.N., Blacque, O.E., & Leroux, M.R. (2009). Functional genomics of intraflagellar transport-associated proteins in C. elegans. Methods in Cell Biology, 93, 267–304. doi:10.1016/S0091-679X(08)93014-4
  • Jarriault, S., Schwab, Y., & Greenwald, I. (2008). A Caenorhabditis elegans model for epithelial-neuronal transdifferentiation. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3790–3795. doi:10.1073/pnas.0712159105
  • Jin, Y. (2005). Synaptogenesis. WormBook : The online review of C. elegans biology. doi:10.1895/wormbook.1.44.1
  • Johnson, C.K., Fernandez-Abascal, J., Wang, Y., Wang, L., & Bianchi, L. (2020). The Na+-K+-ATPase is needed in glia of touch receptors for responses to touch in C. elegans. Journal of Neurophysiology, 123(5), 2064–2074. doi:10.1152/jn.00636.2019
  • Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., … Ahringer, J. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421(6920), 231–237. doi:10.1038/nature01278
  • Katz, M., Corson, F., Iwanir, S., Biron, D., & Shaham, S. (2018). Glia modulate a neuronal circuit for locomotion suppression during sleep in C. elegans. Cell Reports, 22(10), 2575–2583. doi:10.1016/j.celrep.2018.02.036
  • Keino-Masu, K., Masu, M., Hinck, L., Leonardo, E.D., Chan, S.S.Y., Culotti, J.G., & Tessier-Lavigne, M. (1996). Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell, 87(2), 175–185. doi:10.1016/S0092-8674(00)81336-7
  • Kennerdell, J.R., Fetter, R.D., & Bargmann, C.I. (2009). Wnt-Ror signaling to SIA and SIB neurons directs anterior axon guidance and nerve ring placement in C. elegans. Development (Cambridge, England), 136(22), 3801–3810. doi:10.1242/dev.038109
  • Kim, K., Kim, R., & Sengupta, P. (2010). The HMX/NKX homeodomain protein MLS-2 specifies the identity of the AWC sensory neuron type via regulation of the ceh-36 Otx gene in C. elegans. Development (Cambridge, England), 137(6), 963–974. doi:10.1242/dev.044719
  • Kratsios, P., Pinan-Lucarré, B., Kerk, S.Y., Weinreb, A., Bessereau, J.L., & Hobert, O. (2015). Transcriptional coordination of synaptogenesis and neurotransmitter signaling. Current biology: CB, 25(10), 1282–1295. doi:10.1016/j.cub.2015.03.028
  • Kratsios, P., Stolfi, A., Levine, M., & Hobert, O. (2012). Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nature Neuroscience, 15(2), 205–214. doi:10.1038/nn.2989
  • Labouesse, M., Hartwieg, E., & Horvitz, H.R. (1996). The Caenorhabditis elegans LIN-26 protein is required to specify and/or maintain all non-neuronal ectodermal cell fates. Development (Cambridge, England), 122(9), 2579–2588.
  • Lázaro-Peña, M.I., Díaz-Balzac, C.A., Bülow, H.E., & Emmons, S.W. (2018). Synaptogenesis is modulated by heparan sulfate in Caenorhabditis elegans. Genetics, 209(1), 195–208. doi:10.1534/genetics.118.300837
  • Lebrand, C., Dent, E.W., Strasser, G.A., Lanier, L.M., Krause, M., Svitkina, T.M., … Gertler, F.B. (2004). Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron, 42(1), 37–49. doi:10.1016/S0896-6273(04)00108-4
  • Lee, I.H., Procko, C., Lu, Y., & Shaham, S. (2020). Induced nervous system remodeling and behavior. BioRxiv. doi:10.1101/2020.06.03.127894
  • Lee, J., Taylor, C.A., Barnes, K.M., Shen, A., Stewart, E.V., Chen, A., … Shen, K. (2019). A Myt1 family transcription factor defines neuronal fate by repressing non-neuronal genes. eLife, 8, e46703. doi:10.7554/eLife.46703
  • Lei, N., Mellem, J.E., Brockie, P.J., Madsen, D.M., & Maricq, A.V. (2017). NRAP-1 is a presynaptically released NMDA receptor auxiliary protein that modifies synaptic strength. Neuron, 96(6), 1303–1316.e6. doi:10.1016/j.neuron.2017.11.019
  • Lesch, B.J., & Bargmann, C.I. (2010). The homeodomain protein hmbx-1 maintains asymmetric gene expression in adult C. elegans olfactory neurons. Genes & Development, 24(16), 1802–1815. http://genesdev.cshlp.org/cgi/doi/10.1101/gad.1932610 doi:10.1101/gad.1932610
  • Levy-Strumpf, N., & Culotti, J.G. (2007). VAB-8, UNC-73 and MIG-2 regulate axon polarity and cell migration functions of UNC-40 in C. elegans. Nature Neuroscience, 10(2), 161–168. doi:10.1038/nn1835
  • Liu, O.W., & Shen, K. (2012). The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans. Nature Neuroscience, 15(1), 57–63. doi:10.1038/nn.2978
  • Low, I.I.C., Williams, C.R., Chong, M.K., McLachlan, I.G., Wierbowski, B.M., Kolotuev, I., & Heiman, M.G. (2019). Morphogenesis of neurons and glia within an epithelium. Development, 146(4), dev171124. doi:10.1242/dev.171124
  • Lundquist, E.A., Herman, R.K., Shaw, J.E., & Bargmann, C.I. (1998). UNC-115, a conserved protein with predicted LIM and actin-binding domains, mediates axon guidance in C. elegans. Neuron, 21(2), 385–392. doi:10.1016/S0896-6273(00)80547-4
  • Maduro, M.F. (2010). Cell fate specification in the C. elegans embryo. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 239(5), 1315–1329. doi:10.1002/dvdy.22233
  • Maniar, T.A., Kaplan, M., Wang, G.J., Shen, K., Wei, L., Shaw, J.E., … Bargmann, C.I. (2011). UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nature Neuroscience, 15(1), 48–56. doi:10.1038/nn.2970
  • Masoudi, N., Tavazoie, S., Glenwinkel, L., Ryu, L., Kim, K., & Hobert, O. (2018). Unconventional function of an Achaete-Scute homolog as a terminal selector of nociceptive neuron identity. PLoS Biology, 16(4), e2004979. doi:10.1371/journal.pbio.2004979
  • Matthews, B.J., & Vosshall, L.B. (2020). How to turn an organism into a model organism in 10 “easy” steps. The Journal of Experimental Biology, 223(Suppl 1), jeb218198. doi:10.1242/jeb.218198
  • Melentijevic, I., Toth, M.L., Arnold, M.L., Guasp, R.J., Harinath, G., Nguyen, K.C., … Driscoll, M. (2017). C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature, 542(7641), 367–371. doi:10.1038/nature21362
  • Meng, L., Zhang, A., Jin, Y., & Yan, D. (2016). Regulation of neuronal axon specification by glia-neuron gap junctions in C. elegans. eLife, 5, e19510. doi:10.7554/eLife.19510
  • Metzstein, M.M., Hengartner, M.O., Tsung, N., Ellis, R.E., & Horvitz, H.R. (1996). Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature, 382(6591), 545–547. doi:10.1038/382545a0
  • Miller, D.D., Shen, M.M., Shamu, C.E., Burglin, T.R., Ruvkun, G., Dubois, M.L., … Wilson, L. (1992). C. elegans unc-4 gene encodes a homeodomain protein that determines the pattern of synaptic input to specific motor neurons David. Nature, 355 (6363), 841–845. doi:10.1038/355841a0
  • Mishra, N., Wei, H., & Conradt, B. (2018). Caenorhabditis elegans ced-3 caspase is required for asymmetric divisions that generate cells programmed to die. Genetics, 210(3), 983–998. doi:10.1534/genetics.118.301500
  • Molina-García, L., Cook, S., Kim, B., Bonnington, R., Sammut, M., O’Shea, J., … Poole, R. (2019). A direct glia-to-neuron natural transdifferentiation ensures nimble sensory-motor coordination of male mating behaviour. BioRxiv, 285320. doi:10.1101/285320
  • Nechipurenko, I.V., Berciu, C., Sengupta, P., & Nicastro, D. (2017). Centriolar remodeling underlies basal body maturation during ciliogenesis in Caenorhabditis elegans. eLife, 6, e25686. doi:10.7554/eLife.25686
  • Oren-Suissa, M., Bayer, E.A., & Hobert, O. (2016). Sex-specific pruning of neuronal synapses in Caenorhabditis elegans. Nature, 533(7602), 206–211. doi:10.1038/nature17977
  • Oren-Suissa, M., Hall, D.H., Treinin, M., Shemer, G., & Podbilewicz, B. (2010). The fusogen EFF-1 controls sculpting of mechanosensory dendrites. Science (New York, N.Y.).), 328(5983), 1285–1288. doi:10.1126/science.1189095
  • Ou, G., Stuurman, N., D'Ambrosio, M., & Vale, R.D. (2010). Polarized myosin produces unequal-size daughters during asymmetric cell division. Science (New York, N.Y.), 330(6004), 677–680. doi:10.1126/science.1196112
  • Pan, C.L., Howell, J.E., Clark, S.G., Hilliard, M., Cordes, S., Bargmann, C.I., & Garriga, G. (2006). Multiple Wnts and Frizzled receptors regulate anteriorly directed cell and growth cone migrations in Caenorhabditis elegans. Developmental Cell, 10(3), 367–377. doi:10.1016/j.devcel.2006.02.010
  • Patel, M.R., Lehrman, E.K., Poon, V.Y., Crump, J.G., Zhen, M., Bargmann, C.I., & Shen, K. (2006). Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nature Neuroscience, 9(12), 1488–1498. doi:10.1038/nn1806
  • Pedersen, M.E., Snieckute, G., Kagias, K., Nehammer, C., Multhaupt, H.A.B., Couchman, J.R., & Pocock, R. (2013). An epidermal microRNA regulates neuronal migration through control of the cellular glycosylation state. Science (New York, N.Y.), 341(6152), 1404–1408. doi:10.1126/science.1242528
  • Pereira, L., Kratsios, P., Serrano-Saiz, E., Sheftel, H., Mayo, A.E., Hall, D.H., … Hobert, O. (2015). A cellular and regulatory map of the cholinergic nervous system of C. elegans. eLife, 4, e12432. doi:10.7554/eLife.12432
  • Perens, E.A., & Shaham, S. (2005). C. elegans daf-6 encodes a patched-related protein required for lumen formation. Developmental Cell, 8(6), 893–906. doi:10.1016/j.devcel.2005.03.009
  • Philbrook, A., Ramachandran, S., Lambert, C.M., Oliver, D., Florman, J., Alkema, M.J., … Francis, M.M. (2018). Neurexin directs partner-specific synaptic connectivity in C. elegans. eLife, 7, e35692. doi:10.7554/eLife.35692
  • Pinan-Lucarré, B., Tu, H., Pierron, M., Cruceyra, P.I., Zhan, H., Stigloher, C., … Bessereau, J.L. (2014). C. elegans Punctin specifies cholinergic versus GABAergic identity of postsynaptic domains. Nature, 511(7510), 466–470. doi:10.1038/nature13313
  • Pocock, R., & Hobert, O. (2008). Oxygen levels affect axon guidance and neuronal migration in Caenorhabditis elegans. Nature Neuroscience, 11(8), 894–900. doi:10.1038/nn.2152
  • Poinat, P., De Arcangelis, A., Sookhareea, S., Zhu, X., Hedgecock, E.M., Labouesse, M., & Georges-Labouesse, E. (2002). A conserved interaction between beta1 integrin/PAT-3 and Nck-interacting kinase/MIG-15 that mediates commissural axon navigation in C. elegans. Current Biology, 12(8), 622–631. doi:10.1016/S0960-9822(02)00764-9
  • Poole, R.J., Bashllari, E., Cochella, L., Flowers, E.B., & Hobert, O. (2011). A Genome-Wide RNAi screen for factors involved in neuronal specification in Caenorhabditis elegans. PLoS Genetics, 7(6), e1002109. doi:10.1371/journal.pgen.1002109
  • Procko, C., Lu, Y., & Shaham, S. (2011). Glia delimit shape changes of sensory neuron receptive endings in C. elegans. Development, 138(7), 1371–1381. doi:10.1242/dev.058305
  • Rapti, G., Li, C., Shan, A., Lu, Y., & Shaham, S. (2017). Glia initiate brain assembly through noncanonical Chimaerin-Furin axon guidance in C. elegans. Nature Neuroscience, 20(10), 1350–1360. doi:10.1038/nn.4630
  • Reilly, M.B., Cros, C., Varol, E., Yemini, E., & Hobert, O. (2020). Unique homeobox codes delineate all the neuron classes of C. elegans. Nature, 584(7822), 595–601. doi:10.1038/s41586-020-2618-9
  • Richmond, J.E., Davis, W.S., & Jorgensen, E.M. (1999). UNC-13 is required for synaptic vesicle fusion in C. elegans. Nature Neuroscience, 2(11), 959–964. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10526333 doi:10.1038/14755
  • Rongo, C., & Kaplan, J.M. (1999). CaMKII regulates the density of central glutamatergic synapses in vivo. Nature, 402(6758), 195–199. doi:10.1038/46065
  • Roy, P.J., Zheng, H., Warren, C.E., & Culotti, J.G. (2000). mab-20 encodes Semaphorin-2a and is required to prevent ectopic cell contacts during epidermal morphogenesis in Caenorhabditis elegans. Development (Cambridge, England), 127(4), 755–767.
  • Saied-Santiago, K., Townley, R.A., Attonito, J.D., Da Cunha, D.S., Díaz-Balzac, C.A., Tecle, E., & Bülow, H.E. (2017). Coordination of heparan sulfate proteoglycans with wnt signaling to control cellular migrations and positioning in Caenorhabditis elegans. Genetics, 206(4), 1951–1967. doi:10.1534/genetics.116.198739
  • Salzberg, Y., Díaz-Balzac, C.A., Ramirez-Suarez, N.J., Attreed, M., Tecle, E., Desbois, M., … Bülow, H.E. (2013). Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans. Cell, 155(2), 308–320. doi:10.1016/j.cell.2013.08.058
  • Sammut, M., Cook, S.J., Nguyen, K.C.Q., Felton, T., Hall, D.H., Emmons, S.W., … Barrios, A. (2015). Glia-derived neurons are required for sex-specific learning in C. elegans. Nature, 526(7573), 385–390. doi:10.1038/nature15700
  • Sanchez-Alvarez, L., Visanuvimol, J., McEwan, A., Su, A., Imai, J.H., & Colavita, A. (2011). VANG-1 and PRKL-1 cooperate to negatively regulate neurite formation in Caenorhabditis elegans. PLoS Genetics, 7(9), e1002257 doi:10.1371/journal.pgen.1002257
  • Sarin, S., Antonio, C., Tursun, B., & Hobert, O. (2009). The C. elegans Tailless/TLX transcription factor nhr-67 controls neuronal identity and left/right asymmetric fate diversification. Development (Cambridge, England)), 136(17), 2933–2944. doi:10.1242/dev.040204
  • Satterlee, J.S., Sasakura, H., Kuhara, A., Berkeley, M., Mori, I., & Sengupta, P. (2001). Specification of thermosensory neuron fate in C. elegans requires ttx-1, a homolog of otd/Otx. Neuron, 31(6), 943–956. doi:10.1016/S0896-6273(01)00431-7
  • Schafer, W.R. (2018). The worm connectome: Back to the future. Trends in Neurosciences, 41(11), 763–765. doi:10.1016/j.tins.2018.09.002
  • Schmitz, C., Kinge, P., & Hutter, H. (2007). Axon guidance genes identified in a large-scale RNAi screen using the RNAi-hypersensitive Caenorhabditis elegans strain nre-1(hd20) lin-15b(hd126). Proceedings of the National Academy of Sciences of the United States of America, 104(3), 834–839. doi:10.1073/pnas.0510527104
  • Schroeder, N.E., Androwski, R.J., Rashid, A., Lee, H., Lee, J., & Barr, M.M. (2013). Dauer-specific dendrite arborization in C. elegans is regulated by KPC-1/Furin. Current biology: CB, 23(16), 1527–1535. doi:10.1016/j.cub.2013.06.058
  • Sengupta, P., Chou, J.H., & Bargmann, C.I. (1996). odr-10 Encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell, 84(6), 899–909. doi:10.1016/S0092-8674(00)81068-5
  • Shah, P.K., Tanner, M.R., Kovacevic, I., Rankin, A., Marshall, T.E., Noblett, N., … Colavita, A. (2017). PCP and SAX-3/Robo pathways cooperate to regulate convergent extension-based nerve cord assembly in C. elegans. Developmental Cell, 41(2), 195–203.e3. doi:10.1016/j.devcel.2017.03.024
  • Shaham, S. (1998). Identification of multiple Caenorhabditis elegans caspases and their potential roles in proteolytic cascades. The Journal of Biological Chemistry, 273(52), 35109–35117. doi:10.1074/jbc.273.52.35109
  • Shaham, S. (2015). Glial development and function in the nervous system of Caenorhabditis elegans. Cold Spring Harbor Perspectives in Biology, 7(4), a020578 doi:10.1101/cshperspect.a020578
  • Shai Shaham & H. Robert Horvitz (1996). An Alternatively Spliced C. elegans ced-4 RNA Encodes a Novel Cell Death Inhibitor, Cell, 201-208. DOI: 10.1016/S0092-8674(00)80092-6
  • Shao, Z., Watanabe, S., Christensen, R., Jorgensen, E.M., & Colón-Ramos, D.A. (2013). Synapse location during growth depends on glia location. Cell, 154(2), 337–350. doi:10.1016/j.cell.2013.06.028
  • Shen, K., & Bargmann, C.I. (2003). The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell, 112(5), 619–630. doi:10.1016/S0092-8674(03)00113-2
  • Silva, M., Morsci, N., Nguyen, K.C.Q., Rizvi, A., Rongo, C., Hall, D.H., & Barr, M.M. (2017). Cell-specific α-tubulin isotype regulates ciliary microtubule ultrastructure, intraflagellar transport, and extracellular vesicle biology. Current Biology: CB, 27(7), 968–980. doi:10.1016/j.cub.2017.02.039
  • Singhvi, A., & Garriga, G. (2009). Asymmetric divisions, aggresomes and apoptosis. Trends in Cell Biology, 19(1), 1–7. doi:10.1016/j.tcb.2008.10.004
  • Singhvi, A., Liu, B., Friedman, C.J., Fong, J., Lu, Y., Huang, X.-Y., & Shaham, S. (2016). A glial K/Cl transporter controls neuronal receptive ending shape by chloride inhibition of an rGC. Cell, 165(4), 936–948. doi:10.1016/j.cell.2016.03.026
  • Singhvi, A., & Shaham, S. (2019). Glia-neuron interactions in Caenorhabditis elegans. Annual Review of Neuroscience, 42(1), 149–168. doi:10.1146/annurev-neuro-070918-050314
  • Smith, C.J., Watson, J.D., Vanhoven, M.K., Colón-Ramos, D.A., & Miller, D.M. (2012). Netrin (UNC-6) mediates dendritic self-avoidance. Nature Neuroscience, 15(5), 731–737. doi:10.1038/nn.3065
  • Solecki, D.J. (2012). Sticky situations: Recent advances in control of cell adhesion during neuronal migration. Current Opinion in Neurobiology, 22(5), 791–798. doi:10.1016/j.conb.2012.04.010
  • Stefanakis, N., Carrera, I., & Hobert, O. (2015). Regulatory logic of pan-neuronal gene expression in C. elegans. Neuron, 87(4), 733–750. doi:10.1016/j.neuron.2015.07.031
  • Steimel, A., Wong, L., Najarro, E.H., Ackley, B.D., Garriga, G., & Hutter, H. (2010). The Flamingo ortholog FMI-1 controls pioneer-dependent navigation of follower axons in C. elegans. Development, 137(21), 3663–3673. doi:10.1242/dev.054320
  • Stein, G.M., & Murphy, C.T. (2012). The intersection of aging, longevity pathways, and learning and memory in C. elegans. Frontiers in Genetics, 3, 259. doi:10.3389/fgene.2012.00259
  • Stringham, E.G., & Schmidt, K.L. (2009). Navigating the cell: UNC-53 and the navigators, a family of cytoskeletal regulators with multiple roles in cell migration, outgrowth and trafficking. Cell Adhesion & Migration, 3(4), 342–346. doi:10.4161/cam.3.4.9451
  • Sulston, J., Dew, M., & Brenner, S. (1975). Dopaminergic neurons in the nematode Caenorhabditis elegans. The Journal of Comparative Neurology, 163(2), 215–226. doi:10.1002/cne.901630207
  • Sulston, J.E. (1976). Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci, 275(938), 287–297. doi:10.1098/rstb.1976.0084
  • Sulston, J.E., Albertson, D.G., & Thomson, J.N. (1980). The Caenorhabditis elegans male: Postembryonic development of nongonadal structures. Developmental Biology, 78(2), 542–576. doi:10.1016/0012-1606(80)90352-8
  • Sulston, J.E., & Brenner, S. (1974). The DNA of Caenorhabditis elegans. Genetics, 77(1), 95–104.
  • Sulston, J.E., & Horvitz, H.R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental Biology, 56 (1), 110–156. doi:10.1016/0012-1606(77)90158-0
  • Sulston, J.E., Schierenberg, E., White, J.G., & Thomson, J.N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology, 100(1), 64–119. doi:10.1016/0012-1606(83)90201-4
  • Sulston, J.E., & White, J.G. (1980). Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. Developmental Biology, 78(2), 577–597. doi:10.1016/0012-1606(80)90353-X
  • Sundararajan, L., & Lundquist, E.A. (2012). Transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21 control anterior-posterior neuroblast migration with left-right functional asymmetry in Caenorhabditis elegans. Genetics, 192(4), 1373–1388. doi:10.1534/genetics.112.145706
  • Teuliere, J., Cordes, S., Singhvi, A., Talavera, K., & Garriga, G. (2014). Asymmetric neuroblast divisions producing apoptotic cells require the cytohesin GRP-1 in Caenorhabditis elegans. Genetics, 198(1), 229–247. doi:10.1534/genetics.114.167189
  • Tian, D., Diao, M., Jiang, Y., Sun, L., Zhang, Y., Chen, Z., … Ou, G. (2015). Anillin regulates neuronal migration and neurite growth by linking RhoG to the actin cytoskeleton. Current Biology: Cb, 25(9), 1135–1145. doi:10.1016/j.cub.2015.02.072
  • Tornberg, J., Sykiotis, G.P., Keefe, K., Plummer, L., Hoang, X., Hall, J.E., … Bülow, H.E. (2011). Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism. Proceedings of the National Academy of Sciences of the United States of America, 108(28), 11524–11529. doi:10.1073/pnas.1102284108
  • Troemel, E.R., Sagasti, A., & Bargmann, C.I. (1999). Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell, 99(4), 387–398. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10571181 doi:10.1016/S0092-8674(00)81525-1
  • Wadsworth, W.G., Bhatt, H., & Hedgecock, E.M. (1996). Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron, 16(1), 35–46. doi:10.1016/S0896-6273(00)80021-5
  • Wallace, S.W., Singhvi, A., Liang, Y., Lu, Y., & Shaham, S. (2016). PROS-1/Prospero is a major regulator of the glia-specific secretome controlling sensory-neuron shape and function in C. elegans. Cell Reports, 15(3), 550–562. doi:10.1016/j.celrep.2016.03.051
  • Walsh, J.D., Boivin, O., & Barr, M.M. (2020). What about the males? The C. elegans sexually dimorphic nervous system and a CRISPR-based tool to study males in a hermaphroditic species. Advance online publication. Journal of Neurogenetics. doi:10.1080/01677063.2020.1789978
  • Walthall, W.W., & Chalfie, M. (1988). Cell-cell interactions in the guidance of late-developing neurons in Caenorhabditis elegans. Science (New York, N.Y.), 239(4840), 643–645. doi:10.1126/science.3340848
  • Wang, J., Silva, M., Haas, L.A., Morsci, N.S., Nguyen, K.C.Q., Hall, D.H., & Barr, M.M. (2014). C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Current Biology: CB, 24(5), 519–525. doi:10.1016/j.cub.2014.01.002
  • Wang, R., Mellem, J.E., Jensen, M., Brockie, P.J., Walker, C.S., Hoerndli, F.J., … Maricq, A.V. (2012). The SOL-2/Neto auxiliary protein modulates the function of AMPA-subtype ionotropic glutamate receptors. Neuron, 75(5), 838–850. doi:10.1016/j.neuron.2012.06.038
  • Ward, S., Thomson, N., White, J.G., & Brenner, S. (1975). Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans.?2UU. The Journal of Comparative Neurology, 160(3), 313–337. doi:10.1002/cne.901600305
  • Waterston, R., & Sulston, J. (1995). The genome of Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 92(24), 10836–10840. doi:10.1073/pnas.92.24.10836
  • Way, J.C., & Chalfie, M. (1988). mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell, 54(1), 5–16. doi:10.1016/0092-8674(88)90174-2
  • Weimer, R.M., Richmond, J.E., Davis, W.S., Hadwiger, G., Nonet, M.L., & Jorgensen, E.M. (2003). Defects in synaptic vesicle docking in unc-18 mutants. Nature Neuroscience, 6(10), 1023–1030. doi:10.1038/nn1118
  • White, J.G. (2013). Getting into the mind of a worm–a personal view. WormBook. doi:10.1895/wormbook.1.158.1
  • White, J.G., Southgate, E., & Thomson, J.N. (1992). Mutations in the Caenorhabditis elegans unc-4 gene alter the synaptic input to ventral cord motor neurons. Nature, 355(6363), 838–841. doi:10.1038/355838a0
  • White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1976). The structure of the ventral nerve cord of Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 275(938), 327–348. doi:10.1098/rstb.1976.0086
  • White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314(1165), 1–340. doi:10.1098/rstb.1986.0056
  • Whittaker, A.J., & Sternberg, P.W. (2004). Sensory processing by neural circuits in Caenorhabditis elegans. Current Opinion in Neurobiology, 14(4), 450–456. doi:10.1016/j.conb.2004.07.006
  • Wicks, S.R., Yeh, R.T., Gish, W.R., Waterston, R.H., & Plasterk, R.H. (2001). Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nature Genetics, 28(2), 160–164. doi:10.1038/88878
  • Withee, J., Galligan, B., Hawkins, N., & Garriga, G. (2004). Caenorhabditis elegans WASP and Ena/VASP proteins play compensatory roles in morphogenesis and neuronal cell migration. Genetics, 167(3), 1165–1176. doi:10.1534/genetics.103.025676
  • Witvliet, D., Mulcahy, B., Mitchell, J.K., Meirovitch, Y., Berger, D.K., Wu, Y., … Zhen, M. (2020). Connectomes across development reveal principles of brain maturation in C. elegans. BioRxiv. doi:10.1101/2020.04.30.066209
  • Wolf, F.W., Hung, M.S., Wightman, B., Way, J., & Garriga, G. (1998). vab-8 is a key regulator of posteriorly directed migrations in C. elegans and encodes a novel protein with kinesin motor similarity. Neuron, 20(4), 655–666. doi:10.1016/S0896-6273(00)81006-5
  • Xu, Y., & Quinn, C.C. (2012). MIG-10 functions with ABI-1 to mediate the UNC-6 and SLT-1 axon guidance signaling pathways. PLoS Genetics, 8(11), e1003054. doi:10.1371/journal.pgen.1003054
  • Yeh, E., Kawano, T., Ng, S., Fetter, R., Hung, W., Wang, Y., & Zhen, M. (2009). Caenorhabditis elegans innexins regulate active zone differentiation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(16), 5207–5217. doi:10.1523/JNEUROSCI.0637-09.2009
  • Yin, J.A., Gao, G., Liu, X.J., Hao, Z.Q., Li, K., Kang, X.L., … Cai, S.Q. (2017). Genetic variation in glia-neuron signalling modulates ageing rate. Nature, 551(7679), 198–203. doi:10.1038/nature24463
  • Yoshimura, S., Murray, J.I., Lu, Y., Waterston, R.H., & Shaham, S. (2008). mls-2 and vab-3 Control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans. Development, 135(13), 2263–2275. doi:10.1242/dev.019547
  • Yu, T.W., Hao, J.C., Lim, W., Tessier-Lavigne, M., & Bargmann, C.I. (2002). Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/enabled and a netrin-independent UNC-40/DCC function. Nature Neuroscience, 5(11), 1147–1154. doi:10.1038/nn956
  • Zallen, J.A., Yi, B.A., & Bargmann, C.I. (1998). The conserved immunoglobulin superfamily member SAX-3/Robo directs multiple aspects of axon guidance in C. elegans. Cell, 92(2), 217–227. doi:10.1016/S0092-8674(00)80916-2
  • Zhang, A., Ackley, B.D., & Yan, D. (2020). Vitamin B12 regulates glial migration and synapse formation through isoform-specific control of PTP-3/LAR PRTP expression. Cell Reports, 30(12), 3981–3988.e3. doi:10.1016/j.celrep.2020.02.113
  • Zhang, A., Noma, K., & Yan, D. (2020). Regulation of gliogenesis by lin-32/Atoh1 in Caenorhabditis elegans. G3 (Bethesda, Md.), 10(9), 3271–3278. doi:10.1534/g3.120.401547
  • Zheng, C., Diaz-Cuadros, M., & Chalfie, M. (2016). GEFs and Rac GTPases control directional specificity of neurite extension along the anterior-posterior axis. Proceedings of the National Academy of Sciences of the United States of America, 113(25), 6973–6978. doi:10.1073/pnas.1607179113
  • Zhou, Z., Hartwieg, E., & Horvitz, H.R. (2001). CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell, 104(1), 43–56. doi:10.1016/S0092-8674(01)00190-8
  • Zou, W., Dong, X., Broederdorf, T.R., Shen, A., Kramer, D.A., Shi, R., … Shen, K. (2018). A dendritic guidance receptor complex brings together distinct actin regulators to drive efficient F-actin assembly and branching. Developmental Cell, 45(3), 362–375.e3. doi:10.1016/j.devcel.2018.04.008
  • Zou, Y., Chiu, H., Domenger, D., Chuang, C.F., & Chang, C. (2012). The lin-4 microRNA targets the LIN-14 transcription factor to inhibit netrin-mediated axon attraction. Science Signaling, 5(228), ra43. doi:10.1126/scisignal.2002437
  • Zuchero, J.B., & Barres, B.A. (2015). Glia in mammalian development and disease. Development (Cambridge, England), 142(22), 3805–3809. doi:10.1242/dev.129304
  • Zuryn, S., Ahier, A., Portoso, M., White, E.R., Morin, M.C., Margueron, R., & Jarriault, S. (2014). Sequential histone-modifying activities determine the robustness of transdifferentiation. Science (New York, N.Y.), 345(6198), 826–829. doi:10.1126/science.1255885