9
Views
0
CrossRef citations to date
0
Altmetric
Comment

The pioneering use of the PDA phenotype by Bill Pak for screening a network of phototransduction genes and the associated signaling pathways

Received 28 Dec 2023, Accepted 21 Mar 2024, Published online: 19 Jun 2024

References

  • Benzer, S. (1967). Behavioral mutants of Drosophila isolated by countercurrent distribution. Proceedings of the National Academy of Sciences of the United States of America, 58, 1112–1119. https://doi.org/10.1073/pnas.58.3.1112
  • Byk, T., Bar Yaacov, M., Doza, Y. N., Minke, B., & Selinger, Z. (1993). Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell. Proceedings of the National Academy of Sciences of the United States of America, 90, 1907–1911. https://doi.org/10.1073/pnas.90.5.1907
  • Colley, N. J., Baker, E. K., Stamnes, M. A., & Zuker, C. S. (1991). The cyclophilin homolog ninaA is required in the secretory pathway. Cell, 67(2), 255–263. https://doi.org/10.1016/0092-8674(91)90177-z
  • Cosens, D., & Briscoe, D. (1972). A switch phenomenon in the compound eye of the white-eyed mutant of Drosophila melanogaster. Journal of Insect Physiology, 18, 627–632. https://doi.org/10.1016/0022-1910(72)90190-4
  • Dolph, P. J., Ranganathan, R., Colley, N. J., Hardy, R. W., Socolich, M., & Zuker, C. S. (1993). Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science, 260(5116), 1910–1916. https://doi.org/10.1126/science.8316831
  • Doza, Y. N., Minke, B., Chorev, M., & Selinger, Z. (1992). Characterization of fly rhodopsin kinase. European Journal of Biochemistry, 209, 1035–1040. https://doi.org/10.1111/j.1432-1033.1992.tb17379.x
  • Gu, G., Yang, J., Mitchell, K. A., & O'Tousa, J. E. (2004). Drosophila ninaB and ninaD act outside of retina to produce rhodopsin chromophore. The Journal of Biological Chemistry, 279(18), 18608–18613. https://doi.org/10.1074/jbc.M400323200
  • Gutorov, R., Katz, B., & Minke, B. (2022). Electrophysiological methods for measuring photopigment levels in drosophila photoreceptors. Journal of Visualized Experiments: JoVE, https://doi.org/10.3791/63514
  • Hamdorf, K. (1979). The physiology of invertebrate visual pigments. In H. Autrum (Ed.), Handbook of sensory physiology. Comparative physiology and evolution of vision in invertebrates (pp. 145–224). Springer-Verlag.
  • Hardie, R. C., & Raghu, P. (2001). Visual transduction in Drosophila. Nature, 413(6852), 186–193. https://doi.org/10.1038/35093002
  • Hardie, R. C., & Juusola, M. (2015). Phototransduction in Drosophila. Current Opinion in Neurobiology, 34, 37–45. https://doi.org/10.1016/j.conb.2015.01.008
  • Heisenberg, M., & Goetz, K. G. (1975). The use of mutations for the partial degradation of vision in Drosophila Melanogaster. Journal of Comparative Physiology A, 98, 217–241. https://doi.org/10.1007/BF00656971
  • Henderson, S. R., Reuss, H., & Hardie, R. C. (2000). Single photon responses in Drosophila photoreceptors and their regulation by Ca 2+. The Journal of Physiology, 524 Pt 1, 179–194.
  • Hillman, P., Hochstein, S., & Minke, B. (1972). A visual pigment with two physiologically active stable states. Science, 175(4029), 1486–1488. https://doi.org/10.1126/science.175.4029.1486
  • Hillman, P., Hochstein, S., & Minke, B. (1983). Transduction in invertebrate photoreceptors: role of pigment bistability. Physiological Reviews, 63, 668–772. https://doi.org/10.1152/physrev.1983.63.2.668
  • Hochstein, S., Minke, B., & Hillman, P. (1973). Antagonistic components of the late receptor potential in the barnacle photoreceptor arising from different stages of the pigment process. The Journal of General Physiology, 62(1), 105–128. https://doi.org/10.1085/jgp.62.1.105
  • Hotta, Y., & Benzer, S. (1970). Genetic dissection of the Drosophila nervous system by means of mosaics. Proceedings of the National Academy of Sciences of the United States of America, 67, 1156–1163. https://doi.org/10.1073/pnas.67.3.1156
  • Huber, A., Sander, P., Gobert, A., Bahner, M., Hermann, R., & Paulsen, R. (1996). The transient receptor potential protein (Trp), a putative store- operated Ca 2+ channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO Journal, 15, 7036–7045. https://doi.org/10.1002/j.1460-2075.1996.tb01095.x
  • Matsumoto, H., Kurien, B. T., Takagi, Y., Kahn, E. S., Kinumi, T., Komori, N., Yamada, T., Hayashi, F., Isono, K., & Pak, W. L. (1994). Phosrestin I undergoes the earliest light-induced phosphorylation by a calcium/calmodulin-dependent protein kinase in Drosophila photoreceptors. Neuron, 12(5), 997–1010. https://doi.org/10.1016/0896-6273(94)90309-3
  • Minke, B. (2012). The history of the prolonged depolarizing afterpotential (PDA) and its role in genetic dissection of Drosophila phototransduction. Journal of Neurogenetics, 26(2), 106–117. https://doi.org/10.3109/01677063.2012.666299
  • Minke, B., & Kirschfeld, K. (1978). Microspectrophotometric evidence for two photoconvertible states of visual pigments in the barnacle lateral eye. The Journal of General Physiology, 71(1), 37–45. https://doi.org/10.1085/jgp.71.1.37
  • Minke, B., & Pak, W. L. (2022). The light-activated TRP channel: the founding member of the TRP channel superfamily. Journal of Neurogenetics, 36(2-3), 55–64. https://doi.org/10.1080/01677063.2022.2121824
  • Minke, B., Hochstein, S., & Hillman, P. (1973). Letter: Antagonistic process as source of visible-light suppression of afterpotential in Limulus UV photoreceptors. The Journal of General Physiology, 62(6), 787–791. https://doi.org/10.1085/jgp.62.6.787
  • Minke, B., Wu, C. F., & Pak, W. L. (1975). Isolation of light-induce response of the central retinular cells from the electroretinogram of Drosophila. Journal of Comparative Physiology A, 98, 345–355. https://doi.org/10.1007/BF00709805
  • Montell, C., & Rubin, G. M. (1988). The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head. Cell, 52(5), 757–772. 757. https://doi.org/10.1016/0092-8674(88)90413-8
  • Nolte, J., & Brown, J. E. (1972). Ultraviolet-induced sensitivity to visible light in ultraviolet receptors of Limulus. The Journal of General Physiology, 59(2), 186–200. https://doi.org/10.1085/jgp.59.2.186
  • O'Tousa, J. E., Baehr, W., Martin, R. L., Hirsh, J., Pak, W. L., & Applebury, M. L. (1985). The Drosophila ninaE gene encodes an opsin. Cell, 40(4), 839–850. https://doi.org/10.1016/0092-8674(85)90343-5
  • Pak, W. L. (1975). Mutations affecting the vision of Drosophila melanogaster. In R. C. King (Ed.), Handbook of genetics (Vol. 3). Plenum Publishing Corp.
  • Pak, W. L. (1995). Drosophila in vision research. The Friedenwald Lecture. Investigative Ophthalmology & Visual Science, 36, 2340–2357.
  • Pak, W. L., & Lidington, K. J. (1974). Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment. The Journal of General Physiology, 63(6), 740–756. https://doi.org/10.1085/jgp.63.6.740
  • Pak, W. L., Grossfield, J., & White, N. V. (1969). Nonphototactic mutants in a study of vision of Drosophila. Nature, 222(5191), 351–354. https://doi.org/10.1038/222351a0
  • Pak, W. L., Grossfield, J., & Arnold, K. S. (1970). Mutants of the visual pathway of Drosophila melanogaster. Nature, 227(5257), 518–520. https://doi.org/10.1038/227518b0
  • Pak W. L., Ostroy S. E., Deland M. C., Wu C. F. (1976) Photoreceptor mutant of Drosophila: is protein involved in intermediate steps of phototransduction? Science, 194:956-959.
  • Pak, W. L., Shino, S., & Leung, H. T. (2012). PDA (prolonged depolarizing afterpotential)-defective mutants: the story of nina’s and ina’s–pinta and santa maria, too. Journal of Neurogenetics, 26, 216–237. https://doi.org/10.3109/01677063.2011.642430
  • Paulsen, R., & Bentrop, J. (1983). Activation of rhodopsin phosphorylation is triggered by the lumirhodopsin-metarhodopsin I transition. Nature, 302(5907), 417–419. https://doi.org/10.1038/302417a0
  • Schneuwly, S., Shortridge, R. D., Larrivee, D. C., Ono, T., Ozaki, M., & Pak, W. L. (1989). Drosophila ninaA gene encodes an eye-specific cyclophilin (cyclosporine A binding protein). Proceedings of the National Academy of Sciences of the United States of America, 86, 5390–5394. https://doi.org/10.1073/pnas.86.14.5390
  • Selinger, Z., & Minke, B. (1988). Inositol lipid cascade of vision studied in mutant flies. Cold Spring Harbor Symposia on Quantitative Biology, 53 Pt 1, 333–341.
  • Selinger, Z., Doza, Y. N., & Minke, B. (1993). Mechanisms and genetics of photoreceptors desensitization in Drosophila flies. Biochimica et Biophysica Acta, 1179, 283–299. https://doi.org/10.1016/0167-4889(93)90084-3
  • Shieh, B. H., & Niemeyer, B. (1995). A novel protein encoded by the InaD gene regulates recovery of visual transduction in Drosophila. Neuron, 14(1), 201–210. https://doi.org/10.1016/0896-6273(95)90255-4
  • Smith, D. P., Ranganathan, R., Hardy, R. W., Marx, J., Tsuchida, T., & Zuker, C. S. (1991). Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C. Science, 254(5037), 1478–1484. https://doi.org/10.1126/science.1962207
  • Steele, F., & O'Tousa, J. E. (1990). Rhodopsin activation causes retinal degeneration in Drosophila rdgC mutant. Neuron, 4(6), 883–890. https://doi.org/10.1016/0896-6273(90)90141-2
  • Steele, F. R., Washburn, T., Rieger, R., & O'Tousa, J. E. (1992). Drosophila retinal degeneration C (rdgC) encodes a novel serine/threonine protein phosphatase. Cell, 69(4), 669–676. https://doi.org/10.1016/0092-8674(92)90230-a
  • Stephenson, R. S., & Pak, W. L. (1980). Heterogenic components of a fast electrical potential in Drosophila compound eye and their relation to visual pigment photoconversion. The Journal of General Physiology, 75(4), 353–379. https://doi.org/10.1085/jgp.75.4.353
  • Tsunoda, S., Sierralta, J., Sun, Y., Bodner, R., Suzuki, E., Becker, A., Socolich, M., & Zuker, C. S. (1997). A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature, 388(6639), 243–249. https://doi.org/10.1038/40805
  • von, L. J., Dreher, A., Kiefer, C., Wernet, M. F., & Vogt, K. (2001). Analysis of the blind Drosophila mutant ninaB identifies the gene encoding the key enzyme for vitamin A formation invivo. Proceedings of the National Academy of Sciences, 98(3), 1130–1135. https://doi.org/10.1073/pnas.031576398
  • Wu, C. F., & Pak, W. L. (1975). Quantal basis of photoreceptor spectral sensitivity of Drosophila melanogaster. The Journal of General Physiology, 66(2), 149–168. https://doi.org/10.1085/jgp.66.2.149
  • Yamada, T., Takeuchi, Y., Komori, N., Kobayashi, H., Sakai, Y., Hotta, Y., & Matsumoto, H. (1990). A 49-kilodalton phosphoprotein in the Drosophila photoreceptor is an arrestin homolog. Science, 248(4954), 483–486. https://doi.org/10.1126/science.2158671
  • Zuker, C. S., Cowman, A. F., & Rubin, G. M. (1985). Isolation and structure of a rhodopsin gene from D. melanogaster. Cell, 40(4), 851–858. https://doi.org/10.1016/0092-8674(85)90344-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.