1,002
Views
18
CrossRef citations to date
0
Altmetric
Survey Paper

Literature review and current trends on transfemoral powered prosthetics

ORCID Icon, , &
Pages 51-62 | Received 01 May 2017, Accepted 31 Oct 2017, Published online: 22 Nov 2017

References

  • De Roy K. Case study: intelligent and powered leg prosthesis. Wearable robot: biomechatronic exoskeletons. Hoboken (NJ): Wiley; 2008. p. 295–303.
  • Wang J, Kannape OA, Herr HM. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis. IEEE 13th International Conference on Rehabilitation Robotics; Seattle (WA); 2013.p. 1–5.
  • Chin T, Machida K, Sawamura S, et al. Comparison of different microprocessor controlled knee joints on the energy consumption during walking in trans-femoral amputees: intelligent knee prosthesis (IP) versus C-leg. Prosthet Orthot Int. 2006;30:73–80.10.1080/03093640500533414
  • Sup F, Varol HA, Mitchell J, et al. Self-contained powered knee and ankle prosthesis: initial evaluation on a transfemoral amputee. IEEE International Conference on Rehabilitation Robotics; Kyoto, Japan; 2009. p. 638–644.
  • Waters R, Perry J, Antonelli D, et al. Energy cost of walking of amputees. J Bone Jt Surg. 1976;58:42–46.10.2106/00004623-197658010-00007
  • Esquenazi A, Talaty M. Gait analysis: technology and clinical applications. Phys Med Rehabil. 4th ed. Philadelphia: Elsevier; 2011. p. 99–116.
  • Sagawa Y, Turcot K, Armand S, et al. Biomechanics and physiological parameters during gait in lower-limb amputees: a systematic review. Gait Posture. 2011;33:511–526.10.1016/j.gaitpost.2011.02.003
  • Bae TS, Choi K, Mun M. Level walking and stair climbing gait in above-knee amputees. J Med Eng Technol. 2009;33:130–135.10.1080/03091900701404043
  • Schmalz T, Blumentritt S, Marx B. Biomechanical analysis of stair ambulation in lower limb amputees. Gait Posture. 2007;25:267–278.10.1016/j.gaitpost.2006.04.008
  • Pinitlertsakun J, Rachagorngij M, Charoensuk W. Design of the prosthetic knee component to assist stair ascending gait. 6th Biomedical Engineering International Conference; Amphur Muang, Krabi; 2013. p. 1–4.
  • Russell Esposito E, Aldridge Whitehead JM, Wilken JM. Step-to-step transition work during level and inclined walking using passive and powered ankle–foot prostheses. Prosthet Orthot Int. 2016;40:311–319.10.1177/0309364614564021
  • Hobara H, Kobayashi Y, Nakamura T, et al. Lower extremity joint kinematics of stair ascent in transfemoral amputees. Prosthet Orthot Int. 2011;35:467–472.10.1177/0309364611425564
  • Lyons K, Perry J, Gronley JK, et al. Timing and relative intensity of hip extensor and abductor muscle action during level and stair ambulation. An EMG Study Phys Ther. 1983;63:1597–1605.
  • McFadyen BJ, Winter DA. An integrated biomechanical analysis of normal stair ascent and descent. J Biomech. 1988;21:733–744.10.1016/0021-9290(88)90282-5
  • Andriacchi TP, Andersson GB, Fermier RW, et al. A study of lower-limb mechanics during stair-climbing. J Bone Joint Surg Am. 1980;62:749–757.10.2106/00004623-198062050-00008
  • Cluff T, Robertson DGE. Kinetic analysis of stair descent: part 1. Forwards step-over-step descent. Gait Posture. 2011;33:423–428.10.1016/j.gaitpost.2010.12.016
  • Alimusaj M, Fradet L, Braatz F, et al. Kinematics and kinetics with an adaptive ankle foot system during stair ambulation of transtibial amputees. Gait Posture. 2009;30:356–363.10.1016/j.gaitpost.2009.06.009
  • Della Croce U, Bonato P. A novel design for an instrumented stairway. J Biomech. 2007;40:702–704.10.1016/j.jbiomech.2006.01.020
  • Stacoff A, Diezi C, Luder G, et al. Ground reaction forces on stairs: effects of stair inclination and age. Gait Posture. 2005;21:24–38.10.1016/j.gaitpost.2003.11.003
  • Protopapadaki A, Drechsler WI, Cramp MC, et al. Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals. Clin Biomech. 2007;22:203–210.10.1016/j.clinbiomech.2006.09.010
  • Peng J, Fey NP, Kuiken TA, et al. Anticipatory kinematics and muscle activity preceding transitions from level-ground walking to stair ascent and descent. J Biomech. 2016;49:528–536.10.1016/j.jbiomech.2015.12.041
  • Pinitlertsakun J, Charoensuk W. Knee angle model of prosthesis for stair ascending gait detection. Biomedical Engineering International Conference; Chiang Mai, Thailand; 2011. p. 120–124.
  • Wentink EC, Schut VGH, Prinsen EC, et al. Detection of the onset of gait initiation using kinematic sensors and EMG in transfemoral amputees. Gait Posture. 2014;39:391–396.10.1016/j.gaitpost.2013.08.008
  • Dumas R, Cheze L, Frossard L. Loading applied on prosthetic knee of transfemoral amputee: comparison of inverse dynamics and direct measurements. Gait Posture. 2009;30:560–562.10.1016/j.gaitpost.2009.07.126
  • Frossard L, Cheze L, Dumas R. Dynamic input to determine hip joint moments, power and work on the prosthetic limb of transfemoral amputees: ground reaction vs knee reaction. Prosthet Orthot Int. 2011;35:140–149.10.1177/0309364611409002
  • Schuy J, Rinderknecht S. Integrated measurement system for amputee gait analysis: a pilot study. IEEE Healthcare Innovation Conference; Seattle (WA); 2014. p. 91–94.
  • Alves GC, de Rispoli DC, de Rispoli VC, et al. Electromyographic assessment on transfemoral amputees to possibly control artificial lower limbs. Int J Biomed Eng Technol. 2015;17:72.10.1504/IJBET.2015.066969
  • Farrell MT, Herr H. A method to determine the optimal features for control of a powered lower-limb prostheses. Annual International Conference of the IEEE; Boston (MA); 2011. p. 6041–6046.
  • Herr H, Wilkenfeld A. User-adaptive control of a magnetorheological prosthetic knee. Ind Robot An Int J. 2003;30:42–55.10.1108/01439910310457706
  • Huang He, Zhang Fan, Hargrove LJ, et al. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Trans Biomed Eng. 2011;58:2867–2875.10.1109/TBME.2011.2161671
  • Au S, Berniker M, Herr H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Networks. 2008;21:654–666.10.1016/j.neunet.2008.03.006
  • Hefferman GM, Zhang F, Nunnery MJ, et al. Integration of surface electromyographic sensors with the transfemoral amputee socket: a comparison of four differing configurations. Prosthet Orthot Int. 2015;39:166–173.10.1177/0309364613516484
  • El-Sayed AM, Hamzaid NA, Tan KYS, et al. Detection of prosthetic knee movement phases via in-socket sensors: a feasibility study. Sci World J. 2015;2015:1–13.10.1155/2015/923286
  • Hill D, Herr H. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series. IEEE International Conference on Rehabilitation Robotics; Seattle (WA); 2013. p. 1–6.
  • Drevelle X, Villa C, Bonnet X, et al. Analysis of ankle stiffness for asymptomatic subjects and transfemoral amputees in daily living situations. Comput Methods Biomech Biomed Eng. 2014;17:80–81.10.1080/10255842.2014.931146
  • Pratt GA, Williamson MM. Series elastic actuators. IEEE/RSJ International Conference on Intelligent Robots and Systems 95. Human Robot Interaction and Cooperative Robots; Pittsburgh (PA); 1995. p. 399–406.
  • Pratt J, Krupp B, Morse C. Series elastic actuators for high fidelity force control. Ind Robot An Int J. 2002;29:234–241.10.1108/01439910210425522
  • Eslamy M, Grimmer M, Rinderknecht S, et al. Does it pay to have a damper in a powered ankle prosthesis? a power-energy perspective. IEEE International Conference on Rehabilitation Robotics; Seattle (WA); 2013. p. 1–8.
  • Fey NP, Simon AM, Young AJ, et al. Controlling knee swing initiation and ankle plantarflexion with an active prosthesis on level and inclined surfaces at variable walking speeds. IEEE J Transl Eng Heal Med. 2014;2:1–12.
  • El-Sayed AM, Hamzaid NA, Abu Osman NA. Technology efficacy in active prosthetic knees for transfemoral amputees: a quantitative evaluation. Sci World J. 2014;2014:1–17.10.1155/2014/297431
  • Datta D, Howitt J. Conventional versus microchip controlled pneumatic swing phase control for trans-femoral amputees: user’s verdict. Prosthet Orthot Int. 1998;22:129–135.
  • Carlson JD, Matthis W, Toscano JR. Smart prosthetics based on magnetorheological fluids. In: McGowan A-MR, editor. Spie; Newport Beach (CA); 2001. p. 308–316.
  • Herr HM, Wilkenfeld A, Bleck O. Speed-adaptive and patient-adaptive prosthetic knee. US. 2007. p. 1–29.
  • Eberly VJ, Mulroy SJ, Gronley JK, et al. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation. Prosthet Orthot Int. 2014;38:447–455.10.1177/0309364613506912
  • Deffenbaugh BW, Herr HM, Pratt GA, et al. Electronically controlled prosthetic knee. US. 2004. p. 1–42.
  • Yokogushi K, Narita H, Uchiyama E, et al. Biomechanical and clinical evaluation of a newly designed polycentric knee of transfemoral prosthesis. J Rehabil Res Dev. 2004;41:675.10.1682/JRRD.2003.05.0076
  • Lambrecht BGA, Kazerooni H. Design of a semi-active knee prosthesis. IEEE International Conference on Robotics and Automation; 2009. p. 639–645.
  • Pillai MV, Kazerooni H, Hurwich A. Design of a semi-active knee-ankle prosthesis. International Conference on Robotics and Automation; Shanghai, China; 2011. p. 5293–5300.
  • Koganezawa K, Fujimoto H, Kato I. Multifunctional above-knee prosthesis for stairs’ walking. Prosthet Orthot Int. 1987;11:139–145.
  • Bédard S, Pierre-Olivier R. Actuated leg prosthesis for above-knee amputees. US; 2008. p. 1–19.
  • Argunsah Bayram H, Chien C-H, Davis BL. Active functional stiffness of the knee joint during activities of daily living: a parameter for improved design of prosthetic limbs. Clin Biomech. 2014;29:1193–1199.10.1016/j.clinbiomech.2014.09.004
  • Laferrier JZ, Gailey R. Advances in lower-limb prosthetic technology. Phys Med Rehabil Clin N Am. 2010;21:87–110.10.1016/j.pmr.2009.08.003
  • Hafner BJ, Askew RL. Physical performance and self-report outcomes associated with use of passive, adaptive, and active prosthetic knees in persons with unilateral, transfemoral amputation: randomized crossover trial. J Rehabil Res Dev. 2015;52:677–700.10.1682/JRRD.2014.09.0210
  • Sup FC, Goldfarb M. Design of a pneumatically actuated transfemoral prosthesis. Proceedings of the ASME International Mechanical Engineering Congress and Exposition; 2006. p. 1419–1428.
  • Sup F, Bohara A, Goldfarb M. Design Control of a powered knee and ankle prosthesis. IEEE International Conference on Robotics and Automation; Roma, Italy; 2007. p. 4134–4139.
  • Fite K, Mitchell J, Sup F, et al. Design and control of an electrically powered knee prosthesis. IEEE 10th International Conference on Rehabilitation Robotics; Noordwijk, Netherlands; 2007. p. 902–905.
  • Varol HA, Sup F, Goldfarb M. Real-time gait mode intent recognition of a powered knee and ankle prosthesis for standing and walking. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; Scottsdale (AZ); 2008. p. 66–72.
  • Varol HA, Sup F, Goldfarb M. Powered sit-to-stand and assistive stand-to-sit framework for a powered transfemoral prosthesis. IEEE International Conference on Rehabilitation Robotics; Kyoto, Japan; 2009. p. 645–651.
  • Varol HA, Sup F, Goldfarb M. Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans Biomed Eng. 2010;57:542–551.10.1109/TBME.2009.2034734
  • Ha KH, Varol HA, Goldfarb M. Myoelectric control of a powered knee prosthesis for volitional movement during non-weight-bearing activities. Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Buenos Aires, Argentina; 2010.p. 3515–3518.
  • Lawson BE, Varol HA, Sup F, et al. Stumble detection and classification for an intelligent transfemoral prosthesis. Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Buenos Aires, Argentina; 2010.p. 511–514.
  • Lawson BE, Varol HA, Goldfarb M. Standing stability enhancement with an intelligent powered transfemoral prosthesis. IEEE Trans Biomed Eng. 2011;58:2617–2624.10.1109/TBME.2011.2160173
  • Lawson BE, Varol HA, Goldfarb M. Ground adaptive standing controller for a powered transfemoral prosthesis. IEEE International Conference on Rehabilitation Robotics; Zurich, Switzerland; 2011. p. 1–6.
  • Lawson BE, Huff A, Goldfarb MA. Preliminary investigation of powered prostheses for improved walking biomechanics in bilateral transfemoral amputees. Annual International Conference of the IEEE Engineering in Medicine and Biology Society; San Diego (CA); 2012. p. 4164–4167.
  • Ledoux ED, Lawson BE, Shultz AH. et al. Metabolics of stair ascent with a powered transfemoral prosthesis. Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Milan, Italy; 2015. p. 5307–5310.
  • Lawson BE. Control methodologies for powered prosthetic interventions in unilateral and bilateral transfemoral amputees. Nashville (TN): Vanderbilt University; 2014.
  • Hargrove LJ, Simon AM, Young AJ, et al. Robotic leg control with EMG decoding in an amputee with nerve transfers. N Engl J Med. 2013;369:1237–1242.10.1056/NEJMoa1300126
  • Martinez- Villalpando EC, Weber J, Elliott G, et al. Design of an agonist-antagonist active knee prosthesis. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; Scottsdale (AZ); 2008. p. 529–534.
  • Martinez-Villalpando EC, Herr H. Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking. J Rehabil Res Dev. 2009;46:361.10.1682/JRRD.2008.09.0131
  • Rouse EJ, Mooney LM, Martinez-Villalpando EC, et al. Clutchable series-elastic actuator: design of a robotic knee prosthesis for minimum energy consumption. IEEE International Conference on Rehabilitation Robotics; Seattle (WA); 2013. p. 1–6.
  • Tucker MR, Fite KB. Mechanical damping with electrical regeneration for a powered transfemoral prosthesis. IEEE/ASME International Conference on Advanced intelligent mechatronics; Montreal (QC); 2010. p. 13–18.
  • Hoover CD, Fite KBA. A configuration dependent muscle model for the myoelectric control of a transfemoral prosthesis. IEEE International Conference on Rehabilitation Robotics; Zurich, Switzerland; 2011. p. 1–6.
  • Hoover CD, Fulk GD, Fite KB. The design and initial experimental validation of an active myoelectric transfemoral prosthesis. J Med Device. 2012;6:011005.10.1115/1.4005784
  • Pfeifer S. Finding best predictors for the control of transfemoral prostheses. 9. Work. ‘Automatisierungstechnische Verfahren für die Medizin’ (Automed Work). VDI Verlag; 2010. p. 39–40.
  • Pfeifer S, Riener R, Vallery H. An actuated transfemoral prosthesis with optimized polycentric knee joint. 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; Rome, Italy; 2012. p. 1807–1812.
  • Pfeifer SM. Biomimetic stiffness for transfemoral prostheses [ dissertation]. Citeseer; 2014.
  • Crea S, De Rossi SMM, Donati M, et al. Development of gait segmentation methods for wearable foot pressure sensors. Annual International Conference of the IEEE Engineering in Medicine and Biology Society; San Diego (CA); 2012. p. 5018–5021.
  • De Rossi SMM, Crea S, Donati M, et al. Gait segmentation using bipedal foot pressure patterns. 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; Rome, Italy; 2012. p. 361–366.
  • Arnout M, Pierre C, Michael VD, et al. Concept and design of the HEKTA (Harvest Energy from the Knee and Transfer it to the Ankle) transfemoral prosthesis. 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob); Rome, Italy; 2012. p. 550–555.
  • Everarts C, Dehez B, Ronsse R. Variable Stiffness Actuator applied to an active ankle prosthesis: principle, energy-efficiency, and control. 2012 IEEE/RSJ Intelligent Robots and Systems; Vilamoura, Portugal; 2012. p. 323–328.
  • Geeroms J, Flynn L, Jimenez-Fabian R, et al. Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs alpha-prototype. IEEE 13th International Conference on Rehabilitation Robotics; Seattle (WA); 2013. p. 1–6.
  • Ambrozic L, Gorsic M, Geeroms J, et al. CYBERLEGs: a user-oriented robotic transfemoral prosthesis with whole-body awareness control. IEEE Robot Autom Mag. 2014;21:82–93.10.1109/MRA.2014.2360278
  • Flynn L, Geeroms J, Jimenez-Fabian R, et al. CYBERLEGS Beta-Prosthesis active knee system. International Conference on Rehabilitation Robotics; Singapore; 2015. p. 410–415.
  • Liu M, Zhang F, Datseris P, et al. Improving finite state impedance control of active-transfemoral prosthesis using dempster-shafer based state transition rules. J Intell Robot Syst. 2014;76:461–474.10.1007/s10846-013-9979-3
  • Martinez-Villalpando EC, Mooney L, Elliott G, et al. Antagonistic active knee prosthesis. A metabolic cost of walking comparison with a variable-damping prosthetic knee. Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Boston (MA); 2011. p. 8519–8522.
  • Pfeifer S, Pagel A, Riener R, et al. Actuator with angle-dependent elasticity for biomimetic transfemoral prostheses. IEEE/ASME Trans Mechatronics. 2015;20:1384–1394.10.1109/TMECH.2014.2337514
  • Sup F, Varol HA, Mitchell J, et al. Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis. IEEE/ASME Trans Mechatronics. 2009;14:667–676.10.1109/TMECH.2009.2032688
  • Buckley JG, Spence WD, Solomonidis SE. Energy cost of walking: comparison of ‘intelligent prosthesis’ with conventional mechanism. Arch Phys Med Rehabil. 1997;78:330–333.10.1016/S0003-9993(97)90044-7
  • Wolf EJ, Everding VQ, Linberg AL, et al. Assessment of transfemoral amputees using C-Leg and power knee for ascending and descending inclines and steps. J Rehabil Res Dev. 2012;49:831.10.1682/JRRD.2010.12.0234
  • Wolf EJ, Everding VQ, Linberg AA, et al. Comparison of the power knee and C-Leg during step-up and sit-to-stand tasks. Gait Posture. 2013;38:397–402.10.1016/j.gaitpost.2013.01.007
  • Heitzmann D, Alimusaj M, Wolf SI. Powered prosthetic knee for trans-femoral amputees, a case report. Gait Posture. 2012;36:S72.10.1016/j.gaitpost.2011.10.303
  • Martinez-Villalpando EC. Design and evaluation of a biomimetic agonist-antagonist active knee prosthesis. Boston (MA): Massachusetts Institute of Technology; 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.