1,568
Views
52
CrossRef citations to date
0
Altmetric
Survey Paper

Trends in hydraulic actuators and components in legged and tough robots: a review

& ORCID Icon
Pages 458-476 | Received 23 Aug 2017, Accepted 13 Mar 2018, Published online: 08 Apr 2018

References

  • Huber JE , Fleck NA , Ashby MF . The selection of mechanical actuators based on performance indices. Proc R Soc London A. 1997;453:2185–2205.10.1098/rspa.1997.0117
  • Hollerbach JM , Hunter I , Ballantyne J . A comparative analysis of actuator technologies for robotics. Rob Rev. 1991;2:299–342.
  • Paresh CSEN . Electric motor drives and control-past, present, and future. IEEE Trans Industr Electron. 1990;37(6):562–575.
  • Ali HI , Bahari S , Noor BM , et al . A review of pneumatic actuators (modeling and control). Aust J Basic Appl Sci. 2009;3(2):440–454.
  • Rahmat MF , Sunar NH , Salim SNS , et al . Review on modeling and controller design in pneumatic actuator control system. Int J Smart Sens Intell Syst. 2011;4(4):630–661.
  • Woodhead C . Advantages of hydraulic actuators In Valve World Magazine; 2014 Dec, pp. 1–2. [Online]. Available from: www.valve-world.net
  • AbuZaiter A , Nafea M , Faudzi AAM , et al . Thermomechanical behavior of bulk NiTi shape-memory-alloy microactuators based on bimorph actuation. Microsyst Technol. 2016;22(8):2125–2131.10.1007/s00542-015-2641-1
  • Rus D , Tolley MT . Design, fabrication and control of soft robots. Nature. 2015;521:467–475.10.1038/nature14543
  • Majidi C . Soft robotics: a perspective – current trends and prospects for the future. Soft Robot. 2014;1(1):5–11.10.1089/soro.2013.0001
  • De Volder M , Reynaerts D . Pneumatic and hydraulic microactuators: a review. J Micromech Microeng. 2010;20(4):43001.10.1088/0960-1317/20/4/043001
  • Spenko MJ , Haynes GC , Saunders JA , et al . Biologically inspired climbing with a hexapedal robot. J F Robot. 2008;25(4–5):223–242.10.1002/(ISSN)1556-4967
  • Kato K , Hirose S . Development of the quadruped walking robot, TITAN-IX – mechanical design concept and application for the humanitarian de-mining robot. Adv Robot. 2001;15(2):191–204.10.1163/15685530152116227
  • Kitano S , Hirose S , Endo G , et al . Development of lightweight sprawling-type quadruped robot TITAN-XIII and its dynamic walking. 2013:6025–6030.
  • Hodoshima R , Fukuda Y , Hirose S , et al . Development of TITAN XI: a quadruped walking robot to work on slopes – design of system and mechanism. IEEE International Conference on Intelligent Robots and Systems (IEEE Cat. No.04CH37566). Vol. 1; 2004. p. 792–797.
  • Chestnutt J , Lau M , Cheung G , et al . Footstep planning for the Honda ASIMO humanoid. In Proceedings – IEEE International Conference on Robotics and Automation; 2005. p. 629–634.
  • Toyota . Toyota humanoids; 2009. [Online]. Available from: http://www2.toyota.co.jp/en/tech/robot/probot/ind
  • Lohmeier S , Buschmann T , Ulbrich H , et al . Humanoid robot LOLA – research platform for high-speed walking. Motion Vib Control. 2009:221–230.
  • Nishiwaki K , Kagami S , Kuffner J , et al . Humanoid ‘JSK-H7’: research platform for autonomous behavior and whole body motion. In Proc Intl Work. Humanoid Hum. friendly Robot; 2002. p. 2–9.
  • Fuchs M , Borst C , Giordano PR , et al . Rollin’ Justin – Design considerations and realization of a mobile platform for a humanoid upper body. In Proceedings – IEEE International Conference on Robotics and Automation; 2009. p. 4131–4137.
  • Hoske MT . Robotics: higher speeds, more power, programming advances. Control Engineering. 2013. [Online]. Available from: https://www.controleng.com/single-article/robotics-higher-speeds-more-power-programming-advances/7cb8f3d4c385dc5fcb81596d9192bf3b.html
  • Gouaillier D , Hugel V , Blazevic P , et al . Mechatronic design of NAO humanoid. In 2009 IEEE International Conference on Robotics and Automation; 2009. p. 769–774.
  • Alfayad S , Ouezdou FB , Namoun F , et al . High performance integrated electro-hydraulic actuator for robotics – part I: principle, prototype design and first experiments. Sens Actuators A Phys. 2011;169(1):115–123.10.1016/j.sna.2010.10.026
  • Faudzi AAM , Suzumori K , Wakimoto S . Design and control of new intelligent pneumatic cylinder for intelligent chair tool application. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM; 2009. p. 1909–1914.
  • Haraguchi D , Tadano K , Kawashima K . Development of a pneumatically-driven robotic forceps with a flexible wrist joint. Procedia – Soc Behav Sci. 2013;5:61–65.
  • Azman MA , Faudzi AAM , Mustafa ND , et al . Integrating servo-pneumatic actuator with ball beam system based on intelligent position control. J Teknol. 2014;69(3):73–79.
  • Osman K , Faudzi AAM , Rahmat MF , et al . Intelligent pneumatic assisted therapy on ankle rehabilitation. In IEEE International Conference on Rehabilitation Robotics; 2015. p. 107–112.
  • Saga N , Saito N , Ya Nagase J . Ankle rehabilitation device to prevent contracture using a pneumatic balloon actuator. Int J Autom Technol. 2011;5(4):538–543.
  • Colbrunn RW , Nelson GM , Quinn RD . Design and control of a robotic leg with braided pneumatic actuators. In Proceedings of 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expand Soc Role Robot Next Millenn. (Cat. No.01CH37180). Vol. 2; 2001. p. 992–998.
  • Hyon S , Hayashi T , Yagi A , et al . Design of hybrid drive exoskeleton robot XoR2. In IEEE International Conference on Intelligent Robots and Systems; 2013. p. 4642–4648.
  • Ranzani T , Gerboni G , Cianchetti M , et al . A bioinspired soft manipulator for minimally invasive surgery. Bioinspir Biomim. 2015;10(3):35008.10.1088/1748-3190/10/3/035008
  • Niiyama R , Nagakubo A , Kuniyoshi Y . Mowgli: a bipedal jumping and landing robot with an artificial musculoskeletal system. In Proceedings – IEEE International Conference on Robotics and Automation; 2007 Apr. p. 2546–2551.
  • Bachmann RJ , Kingsley DA , Quinn RD , et al . A cockroach robot with artificial muscles. Climbing Walk Robot. 2002:659–666.
  • Razif MRM , Faudzi AAM , Bavandi M , et al . Two chambers soft actuator realizing robotic gymnotiform swimmers fin. In Robotics and Biomimetics (ROBIO), 2014 IEEE International Conference on Robotics and Biomimetics; 2014. p. 15–20.
  • Takeichi M , Suzumori K , Endo G , et al . Development of giacometti arm with balloon body. IEEE Robot Autom Lett. 2017;2(2):951–957.10.1109/LRA.2017.2655111
  • Faudzi AAM , Endo G , Kurumaya S , et al . Long-legged hexapod giacometti robot using thin soft McKibben actuator. IEEE Robot Autom Lett. 2017;3766(c):1.
  • Wang Z , Torigoe Y , Hirai S . A prestressed soft gripper : design, modeling, fabrication, and tests for food handling. IEEE Robot Autom Lett. 2017;2(4):1909–1916.10.1109/LRA.2017.2714141
  • Faudzi AAM , Ooga J , Goto T , et al . Index finger of a human-like robotic hand using thin soft muscles. IEEE Robot Autom Lett. 2017;3766(c):1.
  • Conrad F . Trends in design of water hydraulics – motion control and open-ended solutions. In Proceedings of 6th JFPS International Symposium Fluid Power; 2005; Tsukuba.
  • Suzumori K . Key note talk : next generation robotics developed by fluid power (in Japanese). The Proceedings on Spring Conference of Japan Fluid Power System Society; 2017. [Online] Available from: www.jfps.jp/net/10thjfps/07.html
  • Yuken Kogyo Co Ltd . Basic hydraulic and components; 2006.
  • NFPA . 2015 Annual Report on the U.S. Fluid Power Industry. Natl Fluid Power Assoc. 2015.
  • Japan Fluid Power Association . Statistics of hydraulic; 2017. [Online] Available from: http://www.jfpa.biz/statistics/statistical-data/
  • Saunders S . First 3D printed primary flight control hydraulic component flies the friendly skies on an airbus A380 aircraft. 3DPrint.com. 2017.
  • Unimate First Industrial Robot . 1961. Available from: http://www.robothalloffame.org/inductees/03inducte
  • Johnson H , Milekovic V . Versatran-versatile transfer machine. cyberneticzoo.com; 2013. [Online]. Available from: http://cyberneticzoo.com/early-industrial-robots/1958-62-versatran-industrial-robot-harry-johnson-veljko-milenkovic/
  • Kato I , Ohteru S , Kobayashi H , et al . Information-power machine with senses and limbs. On Theory and Practice of Robots and Manipulators. 1973;1:11–24.
  • Pham PN , Ito K , Ikeo S . Energy saving for water hydraulic pushing cylinder in meat slicer. JFPS Int J Fluid Power Syst. 2017;10(2):24–29.10.5739/jfpsij.10.24
  • Oshima S , Hirano T , Miyakawa S , et al . Development of a rotary type water hydraulic pressure intensifier. Proc JFPS Int Symp Fluid Power. 2008;2008:391–396.10.5739/isfp.2008.391
  • Taylor PM , Kieffer J , Oldaker R , et al . A water hydraulic robot. In Proceedings of the 32nd Conference on Decision and Control; 1993. p. 1911–1912.
  • Focchi M , Guglielmino E , Semini C , et al . Water/air performance analysis of a fluidic muscle. In IEEE/RSJ 2010 Int Conf Intell Robot Syst IROS 2010 – Conf Proc; 2010. p. 2194–2199.
  • Muhammad A , Esque S , Mattila J , et al . Development of water hydraulic remote handling system for divertor maintenance of ITER. In Proc – Symp Fusion Eng; 2007. p. 1–4.
  • Wu H , Handroos H , Pessi P , et al . Development and control towards a parallel water hydraulic weld/cut robot for machining processes in ITER vacuum vessel. Fusion Eng Des. 2005;75–79(SUPPL):625–631.
  • Yokota S , Komatsu T . Flexible hydraulic actuator for space manipulators. JSME Int J. 1994;Series C(1):179–184.
  • Development of a hydraulic drive high-power artificial muscle through the cabinet office tough robotics challenge; 2013. [Online]. Available from: http://www.titech.ac.jp/english/news/2017/037286.html
  • Morita R , Suzumori K . Development of oil-hydraulic artificial muscle and application to robotics (in Japanese). J Jpn Fluid Power Syst Soc. 2017;48(6). to be published November 2017
  • MacCurdy R , Katzschmann R , Kim Y , et al . Printable hydraulics: a method for fabricating robots by 3D co-printing solids and liquids. In IEEE International Conference on Robotics and Automation (ICRA); 2016. p. 3878–3885.
  • Armstrong E . Industry trends available; 2017. Available from: http://news.nfpahub.com/industry-trends-available/
  • Kaminaga H , Otsuki S , Nakamura Y . Development of high-power and backdrivable linear electro-hydrostatic actuator. In IEEE-RAS International Conference on Humanoid Robots (Humanoids); 2014. p. 973–978.
  • Amundson K , Raade J , Harding N , et al . Hybrid hydraulic-electric power unit for field and service robots. 2005 IEEE/RSJ Int Conf Intell Robot Syst IROS. 2005;1864(July):3126–3131.
  • Inoue H . Introduction of product introduction of PC200-8 hybrid hydraulic excavators 1 . introduction (trend toward hybrid con- struction machinery) hydraulic excavator. 2008;54(161):1–6.
  • Inoue H , Yoshida H . Development of hybrid hydraulic excavator. Int J Autom Technol. 2012;6(4):516–520.10.20965/ijat.2012.p0516
  • Ouyang X , Ding S , Fan B , et al . Development of a novel compact hydraulic power unit for the exoskeleton robot. Mechatronics. 2016;38:68–75.10.1016/j.mechatronics.2016.06.003
  • Merkle D . Hydraulics, basic level (textbook). Festo Didactic. 2003.
  • Gonzalez C . What’ s the difference between pneumatic, hydraulic, and electrical actuators ?. Mach Des; 2015. [Online]. Available from: http://www.machinedesign.com/linear-motion/what-s-difference-between-pneumatic-hydraulic-and-electrical-actuators
  • Tadokoro S , Uchizono T . ImPACT tough robotics challenge. In JSME Conference on Robotics and Mechatronics; 2017. p. 1P1-R01 1–2.
  • Tadokoro S . Tough robotics challenge (trc) impulsing paradigm change through disruptive technologies program; 2017. [Online]. Available from: http://www.jst.go.jp/impact/en/program/07.html
  • Jung K , Chu B , Park S , et al . An implementation of a teleoperation system for robotic beam assembly in construction. Int J Precis Eng Manuf. 2013;14(3):351–358.10.1007/s12541-013-0049-3
  • Shah B , Choset H . Survey on urban search and rescue robots. J Robot Soc Japan. 2004;22(5):582–586.10.7210/jrsj.22.582
  • Davids Angela . Urban search and rescue robots: from tragedy to technology. IEEE Intell Syst. 2002;17(2):81–83.
  • Shamsudin AU , Ohno K , Hamada R , et al . Two-stage hybrid A∗ Path-planning in large petrochemical complexes. IEEE/ASME Int Conf Adv Intell Mechatronics, AIM; 2017. p. 1619–1626.
  • Kusakabe Y , Ide T , Hirota Y , et al . Developmet of high perfomance hydraulic actuators and their application to tough robot hand. In JSME Conference on Robotics and Mechatronics; 2016. p. 1P1-09b6 1–3.
  • Yoshinada H , Yokokohji Y , Nagatani K , et al . ImPACT tough robotics challenge construction robot – field evaluation experiments using single arm model. In JSME Conference on Robotics and Mechatronics; 2017. p. 2A1-P01 1–4.
  • Kagawa T , Ono F , Shan L , et al . A study on tough wireless communication for tough robotics. In JSME Conference on Robotics and Mechatronics; 2017. p. 1P1-R07 1–3.
  • Matsuzawa T , Koizumi A , Hashimoto K , et al . Crawling gait for four-limbed robot and simulation on uneven terrain. In 2016 IEEE-RAS 16th International Conference on Humanoid Robots; 2016. p. 3–4.
  • Hamada R , Ohno K , Matsubara S , et al . Development of real-time emotion estimation system for canines. In JSME Conference on Robotics and Mechatronics; 2017. p. 2A1-Q02 1–4.
  • Kamegawa T , Suhara H , Akiyama T , et al . Development of a snake robot moving in a pipe with helical rolling motion. In JSME Conference on Robotics and Mechatronics; 2017. p. 1P2-Q02 1–4.
  • Hemmi M , Hirota Y , Nabae H , et al . Development and test of lightweight, low friction, high power hydraulic actuator for tough robots. In JSME Conference on Robotics and Mechatronics; 2017. p. 2A2-B02 1–3.
  • Morita R , Suzumori K , Nabae H , et al . 3 DOF wrist mechanism for tough robots by hydraulic muscles (in Japanese). In JSME Conference on Robotics and Mechatronics; 2017. p. 2A2-B01 1–2.
  • Ukida T , Suzumori K , Nabae H , et al . Hydraulic control by flow control valve using particle excitation. Trans Jpn Fluid Power Syst Soc. 2016;47(6):39–46.10.5739/jfps.47.39
  • A dual-arm construction robot with remote-control function ; 2017. [Online]. Available from: http://www.titech.ac.jp/english/news/2017/038742.h
  • Mosher R , Liston R . A versatile walking truck. In Proc Trans- portation Eng Conf; 1968.
  • Pugh DR , Ribble EA , Vohnout VJ , et al . Technical description of the adaptive suspension vehicle. Int J Rob Res. 1990;9(2):24–42.10.1177/027836499000900203
  • Vohnout VJ . An excellent adventure. In Advances in Mechanisms, Robotics and Design Education and Research; 2013. p. 34–47.
  • Nabulsi S , Sarria JF , Montes H , et al . High-resolution indirect feet–ground interaction measurement for hydraulic-legged robots. IEEE Trans Instrum Meas. 2009;58(10):3396–3404.10.1109/TIM.2009.2017650
  • Buehler M , Playter R , Raibert M , et al . Robots step outside. In Int Symp Adapt Motion Anim Mach AMAM Ilmenau Ger; 2005. p. 1–4.
  • Playter R , Buehler M , Raibert M . BigDog. In Proceedings of SPIE. Vol. 6230. Unmanned Systems Technology VIII; 2006. p. 1–6.
  • Boston Dynamics Official Website ; 2017. [Online]. [cited 2017 Jul 31]. Available from: https://www.bostondynamics.com/robots
  • Semini C , Tsagarakis NG , Guglielmino E , et al . Design of HyQ – a hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 2011;225(6):831–849.
  • Khan H , Kitano S , Frigerio M , et al . Development of the lightweight hydraulic quadruped robot – MiniHyQ. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA); 2015. p. 1–6.
  • Semini C , Barasuol V , Goldsmith J , et al . Design of the hydraulically-actuated, torque-controlled quadruped robot HyQ2Max. IEEE/ASME Trans Mech. 2017;22(2):635–646.10.1109/TMECH.2016.2616284
  • Semini C , Goldsmith J , Rehman BU , et al . Design overview of the hydraulic quadruped robots HyQ2MAX and HyQ2CENTAUR. In The 14th Scandinavian International Conference on Fluid Power; 2015. p. 1–11.
  • Rong X , Li Y , Ruan J , et al . Design and simulation for a hydraulic actuated quadruped robot. J Mech Sci Technol. 2012;26(4):1171–1177.10.1007/s12206-012-0219-8
  • Runbin Cai , YangZheng Chen , Lin Lang , et al . Inverse kinematics of a new quadruped robot control method. Int J Adv Rob Sy. 2013;10(46):1–8.
  • Wang J , Gao F , Zhang Y . High power density drive system of a novel hydraulic quadruped robot. In Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference; 2014. p. 1–7.
  • Kawabata K , Nishi T , Torii Y , et al . Development of hydraulic quadruped walking robot RL-A1. In JSME Conference on Robotics and Mechatronics; 2014. p. 1A1-I02 1–3.
  • Cho J , Park S , Kim K . Design of mechanical stiffness switch for hydraulic quadruped robot legs inspired by equine distal forelimb. Electron Lett. 2015;51(1):33–35.10.1049/el.2014.3374
  • Cheng G , Hyon SH , Morimoto J , et al . CB: a humanoid research platform for exploring neuroscience. In Proceedings of 2006 6th IEEE-RAS International Conference on Humanoid Robots HUMANOIDS. Vol. 1864; 2006. p. 182–187.
  • Nelson G , Saunders A , Neville N , et al . PETMAN: a humanoid robot for testing chemical protective clothing. J Rob Soc Jpn. 2012;30(4):372–377.10.7210/jrsj.30.372
  • Hiroshi K , Ko T , Masumura R , et al . Mechanism and control of whole-body electro-hydrostatic actuator driven humanoid robot hydra. In International Symposium on Experimental Robotics. 2017;656–665.
  • Sofge E . Meet Hydra, The coolest robot not competing in the DARPA robotics challenge. Popular Sci. 2015.
  • Takahashi H , Ichida S , Hara N , et al . Hydraulic-and-electric double-arm robot. Rob Soc Jpn. 2016;34(1):33–39.10.7210/jrsj.34.33
  • Izawa K , Hyon SH . Prototyping force-controlled 3-DOF hydraulic arms for humanoid robots. J Rob Mech. 2016;28(1):95–103.10.20965/jrm.2016.p0095
  • Xu J , Yoon H-S . A review on mechanical and hydraulic system modeling of excavator manipulator system. J Constr Eng. 2016;2016:1–11.10.1155/2016/9409370
  • Ng F , Harding JA , Glass J . Improving hydraulic excavator performance through in line hydraulic oil contamination monitoring. Mech Syst Signal Process. 2017;83:176–193.10.1016/j.ymssp.2016.06.006
  • Kim K , Jag Y , Ahn H . Development of the flow area optimization for a hydraulic excavator. In JFPS International Journal of Fluid Power System; 2014. p. 20.
  • Oshima Y , Kinoshita T , Koiwai K , et al . Data-driven torque controller for a hydraulic excavator. 2016;28(5):752–758.
  • Inoue K , Yoneda T , Maehara T . Joint torque control by pressure feedback on robotic application. In JFPS International Journal of Fluid Power System; 2014.
  • Ge L , Dong Z , Huang W , et al . Research on the performance of hydraulic excavator with pump and valve combined separate meter in and meter out circuits. In Proceedings of 2015 International Conference on Fluid Power and Mechatronics, FPM 2015; 2015. p. 37–41.
  • Kagoshima M . The Development of an 8 tonne Class Hybrid Hydraulic Excavator SK80H. In Kobelco Technology Review No. 31; 2013. p. 6–11.
  • Cosford J . Trends in construction machinery hydraulics; 2015.
  • Tsurugawa Y , Ishikawa K . Development of hybrid hydraulic excavator. In JFPS International Journal of Fluid Power System; 2014. p. 21.
  • Yoshinada H , Okamura K , Yokota S . Master-slave control method for hydraulic excavator. J Rob Mech. 2012;24:977–984.
  • Nahvi A , Hollerbach JM , Hayward V . Calibration of a parallel robot using multiple kinematic closed loops. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation; 1994. p. 407–412.
  • Goto H , Tanaka Y , Ichiryu K . 3D tube forming and applications of a new bending machine with hydraulic parallel kinematics. Int J Autom Technol. 2012;6(4):509–515.10.20965/ijat.2012.p0509
  • Seki H , Amakata H , Kamiya Y , et al . Development of hydraulic drive drilling robot with 4-DOF tool for in-pipe repair – mechanical design of new tool. Int J Autom Technol. 2012;6(2):221–227.10.20965/ijat.2012.p0221
  • Raibert MH . Legged robots that balance. 1986.
  • Altare G , Vacca A . A design solution for efficient and compact electro-hydraulic actuators. Procedia Eng. 2015;106:8–16.10.1016/j.proeng.2015.06.003
  • Semini C , Baker M , Laxman K , et al . A brief overview of a novel, highly-integrated hydraulic servo actuator with additive-manufactured titanium body. IROS Work. 2016;2016:4–7.
  • Schulte HF . The characteristics of the McKibben artificial muscle. Appl Extern Power Prosthet Orthetics. 1961;874:94–115.
  • Mori M , Suzumori K , Takahashi M , et al . Very high force hydraulic mckibben artificial muscle with a p-phenylene-2, 6-benzobisoxazole cord sleeve very high force hydraulic McKibben artificial muscle with a p -phenylene-2, 6-benzobisoxazole cord sleeve. Adv Rob. 2012;1864(24):233–254.
  • Mori M , Suzumori K , Wakimoto S , et al . Development of power robot hand with shape adaptability using hydraulic McKibben muscles. In Proceedings – IEEE International Conference on Robotics and Automation; 2010. p. 1162–1168.
  • Iwata K , Suzumori K , Wakimoto S , et al . Development of contraction and extension artificial muscles with different braid angles and their application to stiffness changeable bending rubber mechanism by their combination. J Rob Mech. 2016;23 (4):582–588.
  • Nordin INAM , Faudzi AAM , Wakimoto S , et al . Simulations of fiber braided bending actuator : investigation on position of fiber layer placement and air chamber diameter. In IEEE Asian Control Conference; 2015. p. 1–4.
  • Iwata K , Suzumori K , Wakimoto S . A method of designing and fabricating mckibben muscles driven by 7 MPa hydraulics. Int J Autom Technol. 2012;6(4):482–487.10.20965/ijat.2012.p0482
  • Morita R , Suzumori K , Nabae H , et al . Concrete chipping by antagonistic drive of hydraulic artificial muscle (in Japanese). In JSME Conferenc on Robotics and Mechatronics; 2017. p. 2A1-P11 1–2.
  • Raibert M , Blankespoor K , Nelson G , et al . BigDog, the rough-terrain quadruped robot. IFAC Proc. 2008;41(2):10822–10825.10.3182/20080706-5-KR-1001.01833
  • Hemmi M , Hirota Y , Nabae H , et al . Driving robotic leg by lightweight, low friction, high power hydraulic actuator for tough robots. In JSME Conferenc on Robotics and Mechatronics; 2017. p. 2A1-P12 (1–4).
  • Hyon SH , Suewaka D , Torii Y , et al . Development of a fast torque-controlled hydraulic humanoid robot that can balance compliantly. In IEEE-RAS Int Conf Humanoid Robot; 2015 Dec. p. 576–581).
  • Tsukiji T , Noguchi E , Yoshida F . Development of oil hydraulic components using a flow visualization technique. 2012;6(4):4–5.
  • Ukida T , Suzumori K , Nabae H , et al . Development of hydraulic particle excitation control valve driven by lateral-deflection vibration. In JSME Conferenc on Robotics and Mechatronics; 2017. p. 2A1-P08 (1–2).
  • Ofuji S , Kanda T , Osaki H , et al . Control of a McKibben artificial muscle by flow control valves using particle excitation. In JSME Conferenc on Robotics and Mechatronics; 2017. p. 2A1-P10 (1–2.
  • Watanabe T , Inayama T , Oomichi T . Development of the small flow rate water hydraulic servo valve. J Rob Mech. 2010;22(3):333–340.10.20965/jrm.2010.p0333
  • Suzuki K , Akazawa S , Nakao Y . Development of cam-drive type proportional valve for water hydraulics. 2012;6(4):450–456.
  • Valdovinos J , Carman GP . Development of a low-voltage piezohydraulic pump for compact hydraulic systems. Smart Mater Struct. 2015;24(12):125008.10.1088/0964-1726/24/12/125008
  • Hyon S-H , Suewaka D , Torii Y , et al . Design and experimental evaluation of a fast torque-controlled hydraulic humanoid robot. IEEE/ASME Trans Mech. 2017;22(2):1–1.
  • Raade JW , Kazerooni H . Analysis and design of a novel hydraulic power source for mobile robots. IEEE Trans Autom Sci Eng. 2005;2(3):226–232.10.1109/TASE.2005.850394
  • Amundson K , Raade JW , Harding N , et al . Development of hybrid hydraulic-electric power units for field and service robots. Adv Robot. 2006;20(9):1015–1034.10.1163/156855306778394058
  • Achten PAJ . A review of free piston engine concepts. Soc Automot Eng PA, SAE Pap. 1994;#941776.
  • Mattila J , Koivumaki J , Caldwell DG , et al . A survey on control of hydraulic robotic manipulators with projection to future trends. IEEE/ASME Trans Mech. 2017;22(2):669–680.10.1109/TMECH.2017.2668604
  • Izzuddin NH , Faudzi AAM , Johari MR , et al . System identification and predictive functional control for electro-hydraulic actuator system. IEEE Int Symp Robot Intell Sensors. 2015;1:138–143.
  • Harms HH . Hydraulic fluid technology: current problems and future challenges. In International Exposition for Power Transmission and Technical Conference. 2000. p. 1–6.
  • Mori M , Tanaka J , Suzumori K , et al . Field test for verifying the capability of two high-powered hydraulic small robots for rescue operations. In IEEE International Conference on Intelligent Robots and Systems; 2006. p. 3492–3497.
  • Irawan A , Nonami K . Compliant walking control for hydraulic driven hexapod robot on rough terrain. J Robot Mech. 2011;23(1).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.