1,696
Views
22
CrossRef citations to date
0
Altmetric
Survey Paper

Developments and clinical evaluations of robotic exoskeleton technology for human upper-limb rehabilitation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1023-1040 | Received 03 Oct 2019, Accepted 23 Mar 2020, Published online: 10 Apr 2020

References

  • Maciejasz P, Eschweiler J, Gerlach-Hahn K, et al. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11(1):3–29.
  • Gopura RARC, Bandara DSV, Kiguchi K, et al. Developments in hardware systems of active upper-limb exoskeleton robots: a review. Rob Auton Syst. 2015;75:203–220.
  • Molteni F, Gasperini G, Cannaviello G, et al. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: narrative review. PM R. 2018;10(9):S174–S188.
  • Grimaldi G, Manto M. Functional impacts of exoskeleton-based rehabilitation in chronic stroke: multi-joint versus single-joint robotic training. J Neuroeng Rehabil. 2013;10(1):2–4.
  • Feigin VL, Roth GA, Naghavi M, et al. Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet Neurol. 2016;15(9):913–924.
  • “About Stroke,” 2019. [Online]. [cited: 27 Nov 2019]. Available from: https://www.stroke.org/en/about-stroke.
  • Manna SK, Bhaumik S. A bioinspired 10 DOF wearable powered arm exoskeleton for rehabilitation. J Robot. 2013;2013:1–15.
  • Lo K, Stephenson M, Lockwood C. Mobility and functional ability in adult stroke patients: a systematic review protocol. JBI Database System Rev Implement Rep. 2017;15(12):3049–3091.
  • Duret C, Grosmaire A, Krebs HI. Robot-assisted therapy in upper extremity hemiparesis: overview of an evidence-based approach. Front Neurol. 2019;10(April):1–8.
  • Losey DP, McDonald CG, Battaglia E, et al. A review of intent detection, arbitration, and communication aspects of shared control for physical human–robot interaction. Appl Mech Rev. 2018;70(1):10804.
  • Biroua FI. Development and testing of a mixed feedback control system for robotic hand exoskeleton. 2019 15th international conference on engineering of modern electric systems (EMES); IEEE; 2019. p. 17–20
  • Pirondini E, Coscia M, Marcheschi S, et al. Evaluation of the effects of the arm light exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects. J Neuroeng Rehabil. 2016;13(1):1–21.
  • Kyle D. Clinical evaluation of an upper limb exoskeleton for rehabilitation after incomplete spinal cord injury [PhD diss]. Rice University, 2015.
  • Bertani R, Melegari C, De Cola MC, et al. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci. 2017;38(9):1561–1569.
  • Singh H, Unger J, Zariffa J, et al. Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: a systematic scoping review. Disability Rehabil Assistive Technol. 2018;13(7):704–715.
  • Xiao F, Gao Y, Wang Y, et al. Design and evaluation of a 7-DOF cable-driven upper limb exoskeleton. J Mech Sci Technol. 2018;32(2):855–864.
  • Huang J, Tu X, He J. Design and evaluation of the RUPERT wearable upper extremity exoskeleton robot for clinical and in-home therapies. IEEE Trans Syst Man, Cybern: Syst. 2016;46(7):926–935.
  • Wu Q, Wang X, Chen B, et al. Patient-active control of a powered exoskeleton targeting upper limb rehabilitation training. Front Neurol. 2018;9(October):1–13.
  • Frisoli A, Sotgiu E, Procopio C, et al. Training and assessment of upper limb motor function with a robotic exoskeleton after stroke. 2012 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob); 2012. p. 1782–1787.
  • Péter O, Fazekas G, Zsiga K, et al. Robot-mediated upper limb physiotherapy: review and recommendations for future clinical trials. Int J Rehabil Res. 2011;34(3):196–202.
  • Mehrholz J, Hädrich A, Platz T, et al. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2015(11).
  • Sheng B, Zhang Y, Meng W, et al. Bilateral robots for upper-limb stroke rehabilitation: state of the art and future prospects. Med Eng Phys. 2016;38(7):587–606.
  • Veerbeek JM, Langbroek-Amersfoort AC, Van Wegen EEH, et al. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair. 2017;31(2):107–121.
  • Zhang C, Li-Tsang CWP, Au RKC. Robotic approaches for the rehabilitation of upper limb recovery after stroke: a systematic review and meta-analysis. Int J Rehabil Res. 2017;40(1):19–28.
  • Xiloyannis M, Chiaradia D, Frisoli A, et al. Physiological and kinematic effects of a soft exosuit on arm movements. J Neuroeng Rehabil. 2019;16(1):1–15.
  • Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J Neuroeng Rehabil. 2018;15(1):1–15.
  • Lo AC, Guarino PD, Richards LG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–1783.
  • Riener R, Lünenburger L, Colombo G. Human-centered robotics applied to gait training and assessment. J Rehabil Res Dev. 2006;43(5):679–693.
  • Dietz V, Fouad K. Restoration of sensorimotor functions after spinal cord injury. Brain. 2014;137(3):654–667.
  • Marchal-Crespo L, McHughen S, Cramer SC, et al. The effect of haptic guidance, aging, and initial skill level on motor learning of a steering task. Exp Brain Res. 2010;201(2):209–220.
  • Metzger J-C, Lambercy O, Califfi A, et al. Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot. J Neuroeng Rehabil. 2014;11(1):154.
  • Zimmerli L, Krewer C, Gassert R, et al. Validation of a mechanism to balance exercise difficulty in robot-assisted upper-extremity rehabilitation after stroke. J Neuroeng Rehabil. 2012;9(1):6.
  • Saposnik G, Levin M, Stroke outcome research Canada (SORCan) working group, virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke. 2011;42(5):1380–1386.
  • Cheung EYY, Ng TKW, Yu KKK, et al. Robot-assisted training for people with spinal cord injury: A meta-analysis. Arch Phys Med Rehabil. 2017;98(11):2320–2331.e12.
  • Wei Q, Li Z, Zhao K, et al. Synergy-based control of assistive lower-limb exoskeletons by skill transfer. IEEE/ASME Trans Mechatronics:2019;4435(c).
  • Wei D, Li Z, Wei Q, et al. Human-in-the-loop control strategy of unilateral exoskeleton robots for gait rehabilitation. IEEE Trans Cogn Dev Syst. 2019;8920(c).
  • Science E. A bioinspired 10 DOF wearable powered arm exoskeleton for rehabilitation. J Robot. 2013;2013(December):1–15.
  • Zhou L, Li Y, Bai S. A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation. Rob Auton Syst. 2017;91:337–347.
  • Mao Y, Agrawal SK. Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Trans Robot. 2012;28(4):922–931.
  • Li Z, Su C, Li G, et al. Fuzzy Approximation-based adaptive backstepping control of an exoskeleton for human upper limbs. IEEE Trans Fuzzy Syst. 2015;23(3):555–566.
  • Li Z, Xiao S, Ge SS, et al. Constrained multilegged robot system modeling and fuzzy control with uncertain kinematics and dynamics incorporating foot force optimization. IEEE Trans Syst Man Cybern Syst. Jan. 2016;46(1):1–15.
  • Lu EC, Wang R, Huq R, et al. Development of a robotic device for upper limb stroke rehabilitation: a user-centered design approach. Paladyn, J Behav Robot. 2011;2(4):176–184.
  • Matthew RP, Mica EJ, Meinhold W, et al. Introduction and initial exploration of an active/passive exoskeleton framework for portable assistance. IEEE Int Conf Intell Robot Syst. 2015;2015 (Decmber):5351–5356.
  • Biddiss E, Chau T. Dielectric elastomers as actuators for upper limb prosthetics: challenges and opportunities. Med Eng Phys. 2008;30(4):403–418.
  • Kiguchi K, Rahman MH, Sasaki M, et al. Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assist. Rob Auton Syst. 2008;56(8):678–691.
  • Jain SK. A study of 200 cases of congenital limb deficiencies. Prosthet Orthot Int. 1994;18(3):174–179.
  • Scotland TR, Galway HR. A long-term review of children with congenital and acquired upper limb deficiency. J Bone Joint Surg Br. 1983;65-B(3):346–349.
  • Dalal PM. Strokes in young in India. J Int Med Sci Acad. 2004;17(2):79–83.
  • Warlow C, Sudlow C, Dennis M, et al. Stroke. Lancet. 2003;362(9391):1211–1224.
  • National Sample Survey Office. Disabled persons in India: a statistical profile, pp. 0–107, 2016.
  • World Health Organization. The Global Burden of Disease: 2004 update, 2004 Updat., p. 146, 2008.
  • Feigin VL, Lawes CMM, Bennett DA, et al. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2(1):43–53.
  • “Cerebral palsy,” 2016. [Online]. Available from: https://www.mayoclinic.org/diseases-conditions/cerebral-palsy/symptoms-causes/syc-20353999.
  • Elkouzi DA. “Understanding Parkinson’s.” [Online]. Available from: http://www.parkinson.org/understanding-parkinsons/what-is-parkinsons.
  • Bélaise C, Maso FD, Michaud B, et al. An EMG-marker tracking optimisation method for estimating muscle forces. Multibody Syst Dyn. 2017;42:119–143.
  • Kalyoncu M. Design and actuator Selection of a lower extremity exoskeleton. IEEE/ASME Trans Mechatron. 2014;19(2):623–632.
  • Chandrasiri MDSD, Ranaweera RKPS, Gopura RARC. Development of a surface muscle pressure monitoring system for wearable robotic devices. 2019 Moratuwa engineering research conference (MERCon); 2019. p. 544–549.
  • Gunasekara JMP, Gopura RARC, Jayawardane TSS, et al. Control methodologies for upper limb exoskeleton robots. 2012 IEEESICE international symposium on system integration (SII); 2012. p. 19–24.
  • Wu X, Li Z. Cooperative manipulation of wearable dual-arm exoskeletons using force communication between partners. IEEE Trans Ind Electron. 2019;0046(c):1.
  • Wu X, Li Z, Kan Z, et al. Reference trajectory reshaping optimization and control of robotic exoskeletons for human-robot co-manipulation. IEEE Trans Cybern. 2019: 1–12.
  • Jamal MZ. Signal acquisition using surface EMG and circuit design considerations for robotic prosthesis. In: Naik GR, editor. Computational intelligence in electromyography analysis. Rijeka: IntechOpen; 2012. p. 427–448 https://doi.org/10.5772/52556.
  • Al-Quraishi MS, Elamvazuthi I, Daud SA, et al. Eeg-based control for upper and lower limb exoskeletons and prostheses: a systematic review. Sensors (Switzerland). 2018;18(10):1–27.
  • Narayan J, Kalani A, Dwivedy SK. Reference trajectory based Jacobian transpose control of a novel lower limb exoskeleton system for children. 2019 5th international conference on signal processing, computing and control (ISPCC); 2019. p. 102–107,
  • Ganesan Y, Gobee S, Durairajah V. Development of an upper limb exoskeleton for rehabilitation with feedback from EMG and IMU sensor. Procedia Comput Sci. 2015;76(Iris):53–59.
  • Yue C, Lin X, Zhang X, et al. Design and performance evaluation of a wearable sensing system for lower-limb exoskeleton. Appl Bionics Biomech. 2018;2018:1–9. https://doi.org/10.1155/2018/8610458.
  • Long Y, Du ZJ, Wang W, et al. Development of a wearable exoskeleton rehabilitation system based on hybrid control mode. Int J Adv Rob Syst. 2016;13(5):1–10.
  • Li Z, Yuan Y, Luo L, et al. Hybrid brain/muscle signals powered wearable walking exoskeleton enhancing motor ability in climbing stairs activity. IEEE Trans Med Rob Bionics. 2019;1(4):218–227.
  • Anam K, Al-Jumaily AA. Active exoskeleton control systems: state of the art. Procedia Eng. 2012;41(Iris):988–994.
  • He W, Li Z, Dong Y, et al. Design and adaptive control for an upper limb robotic exoskeleton in presence of input saturation. IEEE Trans Neural Netw Learn Syst. 2019;30(1):97–108.
  • Bembli S, Haddad NK, Belghith S. Robustness analysis of an upper limb exoskeleton controlled by sliding mode algorithm. Mech, Mach, Rob Mechatron Sci. 2019;58:99–112.
  • Kang HB, Wang JH. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety. ISA Trans. 2013;52(6):844–852.
  • Long Y, Du Z, Cong L, et al. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. ISA Trans. 2017;67:389–397.
  • Li Z, Li J, Zhao S, et al. Adaptive neural control of a Kinematically Redundant exoskeleton robot using brain-machine interfaces. IEEE Trans Neural Netw Learn Syst. 2019;30(12):3558–3571.
  • Jeong U, In HK, Cho KJ. Implementation of various control algorithms for hand rehabilitation exercise using wearable robotic hand. Intell Serv Rob. 2013;6(4):181–189.
  • Xu W, Chu B, Rogers E. Iterative learning control for robotic-assisted upper limb stroke rehabilitation in the presence of muscle fatigue. Control Eng Pract. 2014;31:63–72.
  • Stewart AM, Pretty CG, Adams M, et al. Review of upper limb hybrid exoskeletons. IFAC-PapersOnLine. 2017;50(1):15169–15178.
  • Balasubramanian S, Ward J, Sugar T, et al. Characterization of the dynamic properties of pneumatic muscle actuators. 2007 IEEE 10th international conference on rehabilitation robotics; 2007. p. 764–770,
  • Caldwell DG, Razak A, Goodwin M. Braided pneumatic muscle actuators. IFAC Proc. 1993;26(1):522–527.
  • van Ninhuijs B, van der Heide LA, Jansen JW, et al. Overview of actuated arm support systems and their applications. Actuators. 2013;2(4):86–110.
  • Herr H. Exoskeletons and orthoses: classification, design challenges and future directions. J Neuroeng Rehabil. 2009;6(1):1–9. https://doi.org/10.1186/1743-0003-6-21.
  • Camp AS, Chapman EM, Cienfuegos PJ. Modeling and analysis of hydraulic piston actuation of McKibben fluidic artificial muscles for hand rehabilitation. Int J Rob Res. 2019: 1–12. https://doi.org/10.1177/0278364919872251.
  • Atia MGB, Salah O, Medhat B, et al. Design and analysis of low cost upper limb exoskeleton. 2017 12th international conference on computer engineering and systems (ICCES); 2017. p. 80–84.
  • “Cyberdyne HAL.” [Online]. Available from: https://www.cyberdyne.jp.
  • Li Z, Huang B, Ajoudani A, et al. Asymmetric Bimanual control of dual-Arm exoskeletons for human-cooperative Manipulations. IEEE Trans Robot. 2018;34(1):264–271.
  • Murtagh J. Rewalk: robotic exoskeletons for spinal cord injury. CADTH Issues Emerg Heal Technol. 2015;141:1–12. https://www.cadth.ca/sites/default/files/pdf/ReWalk_Robotic_Exoskeletons_for_Spinal_Cord_Injury_e.pdf.
  • Bogue R. Exoskeletons and robotic prosthetics: a review of recent developments. Ind Robot: Int J. 2009;36(5):421–427.
  • “ReWalk Personal 6.0,” 2018. [Online]. Available from: http://rewalk.com/.
  • Gunasekara M, Gopura R, Jayawardena S. 6-REXOS: upper limb exoskeleton robot with improved pHRI. Int J Adv Rob Syst. 2015;12:1–13. https://doi.org/10.5772/60440.
  • Martinez JA, Ng P, Lu S, et al. Design of wrist gimbal: a forearm and wrist exoskeleton for stroke rehabilitation. IEEE Int Conf Rehabil Robot. 2013;13:1–6. https://doi.org/10.1109/ICORR.2013.6650459.
  • Ball SJ, Brown IE, Scott SH. MEDARM: A rehabilitation robot with 5DOF at the shoulder complex. 2007 IEEE/ASME international conference on advanced intelligent mechatronics; IEEE; 2007. p. 1–6.
  • Nef T, Mihelj M, Colombo G, et al. ARMin-robot for rehabilitation of the upper extremities. Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006; 2006. p. 3152–3157.
  • Kiguchi K, Hayashi Y. An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Trans Syst, Man, Cybern, Part B Cybern. 2012;42(4):1064–1071.
  • Lo HS, Xie SSQ. An upper limb exoskeleton with an optimized 4R spherical wrist mechanism for the shoulder joint. 2014 IEEE/ASME international conference on Advanced intelligent mechatronics; 2014. p. 269–274,
  • Beigzadeh B, Ilami M, Najafian S. Design and development of one degree of freedom upper limb exoskeleton. 2015 3rd RSI international conference on robotics and mechatronics (ICROM); 2015. p. 223–228.
  • Mahdavian M, Toudeshki AG, Yousefi-Koma A. Design and fabrication of a 3DoF upper limb exoskeleton. 2015 3rd RSI international conference on robotics and mechatronics (ICROM); 2015. p. 342–346.
  • Hong MB, Kim SJ, Kim K. Development of a 10-DOF robotic system for upper-limb power assistance. 2012 9th international conference on ubiquitous robots and ambient intelligence (URAI); 2012. p. 61–62.
  • Gopura RARC, Kiguchi K. Development of an exoskeleton robot for human wrist and forearm motion assist. 2007 international conference on industrial and information systems; IEEE, 2007, p. 535–540.
  • Noda T, Teramae T, Ugurlu B, et al. Development of an upper limb exoskeleton powered via pneumatic electric hybrid actuators with bowden cable. 2014 IEEE/RSJ international conference on intelligent robots and systems; 2014. p. 3573–3578.
  • Lo HS, Xie SQ. Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys. 2012;34(3):261–268.
  • Lu J, Chen W, Tomizuka M. Kinematic design and analysis of a 6-DOF upper limb exoskeleton model for a brain-machine interface study. Proc 6th IFAC Symp Mechatronic Syst. 2013;46(5):293–300.
  • Hasegawa Y, Kikai T, Eguchi K, et al. Exoskeletal meal assistance system (EMAS III) for progressive muscle dystrophy patient. 2011 IEEE international conference on rehabilitation robotics; 2014. p. 279–284.
  • Gupta A, O’Malley MK. Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Trans Mechatron. 2006;11(3):280–289.
  • Kiguchi K, Iwami K, Yasuda M, et al. An Exoskeletal robot for human shoulder joint. IEEE/ASME Trans Mechatron. 2003;8(1):125–135.
  • Gopura RARC, Kiguchi K, Yi Y. SUEFUL-7: A 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. 2009 IEEE/RSJ international conference on intelligent robots and systems; 2009. pp. 1126–1131.
  • Frisoli A, Salsedo F, Bergamasco M, et al. A force-feedback exoskeleton for upper-limb rehabilitation in virtual reality. Appl Bionics Biomech. 2009;6(2):115–126.
  • Rocon E, Belda-Lois JM, Ruiz AF, et al. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng. 2007;15(1):367–378.
  • Johnson GR, Carus DA, Parrini G, et al. The design of a five degree of freedom powered orthosis for the upper limb. Proc Inst Mech Eng, Part H: J Eng Med. 1989;215:275–284.
  • Sasaki D, Noritsugu T, Takaiwa M. Development of active support splint driven by pneumatic soft actuator (ASSIST). Proc IEEE Int Conf Robot Autom. 2005;2005(April):520–525.
  • Klein J, Spencer SJ, Allington J, et al. Biomimetic orthosis for the neurorehabilitation of the elbow and shoulder (BONES). 2008 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics; 2008. pp. 535–541.
  • Sugar TG, He J, Koeneman EJ, et al. Design and control of RUPERT: A device for robotic upper extremity repetitive therapy. IEEE Trans Neural Syst Rehabil Eng. 2007;15(1):336–346.
  • Mistry M, Mohajerian P, Schaal S. An exoskeleton robot for human arm movement study. 2005 IEEE/RSJ international conference on intelligent robots and systems; 2005. pp. 3114–3119.
  • Schiele A, Hirzinger G. A new generation of ergonomic exoskeletons - The high-performance X-Arm-2 for space robotics telepresence. IEEE Int Conf Intell Robot Syst. 2011: 2158–2165.
  • Schill O, Wiegand R, Schmitz B, et al. Orthojacket: An active FES-hybrid orthosis for the paralysed upper extremity. Biomed Eng. 2011;56(1):35–44.
  • Wang W, Qin L, Yuan X, et al. Bionic control of exoskeleton robot based on motion intention for rehabilitation training. Adv Robot. 2019;33(12):590–601.
  • Maciejasz Pawełand Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, et al. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11(1):1–29.
  • Aguiar Noury G, Bradwell H, Thill S, et al. User-defined challenges and desiderata for robotics and autonomous systems in health and social care settings. Adv Robot. 2019;33(7–8):309–324.
  • Barsotti M, Leonardis D, Loconsole C, et al. A full upper limb robotic exoskeleton for reaching and grasping rehabilitation triggered by MI-BCI. 2015 IEEE international conference on rehabilitation robotics (ICORR); 2015. pp. 49–54.
  • Ferris DP, Sawicki GS, Daley MA. A physiologist’s perspective on robotic exoskeletons for human locomotion. Int J Humanoid Rob. 2007;4(3):507–528.
  • Kandilakis C, Sasso-lance E. Exoskeletons for personal use after spinal cord injury. Arch Phys Med Rehabil. 2019: 1–7.
  • Quental C, Folgado J, Ambrósio J. A multibody biomechanical model of the upper limb including the shoulder girdle. Multibody Syst Dyn Vol. 28Springer; 2012. p. 83–108.
  • Gopura RARC, Kiguchi K, Yi Y. SUEFUL-7: A 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. 2009 IEEE/RSJ international conference on intelligent robots and systems; 2009. p. 1126–1131,
  • Dwivedi A, Kwon Y, Mcdaid AJ, et al. A learning scheme for EMG based Decoding of Dexterous, In-hand Manipulation motions. IEEE Trans Neural Syst Rehabil Eng. 2019;27(10):2205–2215.
  • Gupta A, Mondal A, Gupta M. Kinematic, Dynamic analysis and control of 3 DOF upper-limb robotic exoskeleton. J. Eur. en des Systèmes Autom. 2019;52(3):297–304.
  • Verma V, Chowdary V, Gupta MK, et al. Iot and robotics in healthcare. In: Ella Hassanien Aboul, Dey Nilanjan, Borra Surekha, editors. Medical big data and internet of medical things, CRC Press; 2018. p. 245–269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.