2,528
Views
13
CrossRef citations to date
0
Altmetric
Full Papers

Compliance, mass distribution and contact forces in cursorial and scansorial locomotion with biorobotic physical models

ORCID Icon, ORCID Icon, , , , , , , , ORCID Icon & ORCID Icon show all
Pages 437-449 | Received 01 Oct 2020, Accepted 19 Jan 2021, Published online: 13 Apr 2021

References

  • Trimmer B. Soft robots. Curr Biol. 2013;23(15):R639–R641.
  • Iida F, Laschi C. Soft robotics: challenges and perspectives. Procedia Comput Sci. 2011;7:99–102.
  • Yang GZ, Bellingham J, Dupont PE, et al. The grand challenges of science robotics. Sci Robot. 2018;3(14):eaar7650.
  • Gilbertson MD, McDonald G, Korinek G, et al. Serially actuated locomotion for soft robots in tube-like environments. IEEE Robot Automat Lett. 2017;2(2):1140–1147.
  • Cheney N, Bongard J, Lipson H. Evolving soft robots in tight spaces. Proceedings of the annual conference on genetic and evolutionary computation; ACM; 2015. p. 935–942.
  • Banerjee H, Pusalkar N, Ren H. Single-motor controlled tendon-driven peristaltic soft origami robot. J Mech Robot. 2018;10(6):064501.
  • Lipson H. Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robotics. 2014;1(1):21–27.
  • Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature. 2015;521(7553):467–475.
  • Nirody JA, Jinn J, Libby T, et al. Geckos race across the water's surface using multiple mechanisms. Curr Biol. 2018;28(24):4046–4051.e2.
  • Jusufi A, Kawano DT, Libby T, et al. Righting and turning in mid-air using appendage inertia: reptile tails, analytical models and bio-inspired robots. Bioinspir Biomim. 2010;5(4):045001.
  • Libby T, Moore TY, Chang-Siu E, et al. Tail-assisted pitch control in lizards, robots and dinosaurs. Nature. 2012;481(7380):181–184.
  • Kim S, Asbeck AT, Cutkosky MR, et al. Spinybotii: climbing hard walls with compliant microspines. Proceedings of 12th international conference on advanced robotics (ICAR); IEEE; 2005. p. 601–606.
  • Asbeck AT, Kim S, McClung A, et al. Climbing walls with microspines. Proceedings of the IEEE international conference robotics and automation (ICRA); IEEE; 2006.
  • Martone M, Pavlov C, Zeloof A, et al. Enhancing the vertical mobility of a robot hexapod using microspines. 2019. arXiv:190604811.
  • Manoonpong P, Petersen D, Kovalev A, et al. Enhanced locomotion efficiency of a bio-inspired walking robot using contact surfaces with frictional anisotropy. Sci Rep. 2016;6:1145.
  • Liu Y, Sun S, Wu X, et al. A wheeled wall-climbing robot with bio-inspired spine mechanisms. J Bionic Eng. 2015;12(1):17–28.
  • Roderick WR, Cutkosky MR, Lentink D. Touchdown to take-off: at the interface of flight and surface locomotion. Interface Focus. 2017;7(1):20160094.
  • Nguyen HN, Siddall R, Stephens B, et al. A passively adaptive microspine grapple for robust, controllable perching. Proceedings of 2nd IEEE international conference on soft robotics (RoboSoft); IEEE; 2019. p. 80–87.
  • Souri H, Banerjee H, Jusufi A, et al. Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications. Adv Intell Syst. 2020;2:2000039.
  • Boxerbaum AS, Oro J, Peterson G, et al. The latest generation whegsTMrobot features a passive-compliant body joint. Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS); IEEE; 2008. p. 1636–1641.
  • Jusufi A, Goldman DI, Revzen S, et al. Active tails enhance arboreal acrobatics in geckos. Proc Natl Acad Sci. 2008;105(11):4215–4219.
  • Siddall R, Schwab F, Michel J, et al. Heads or tails? cranio-caudal mass distribution for robust locomotion with biorobotic appendages composed of 3d-printed soft materials. Proceedings of conference on biomimetic and biohybrid systems; Springer; 2019. p. 240–253.
  • Wilson AM, Lowe J, Roskilly K, et al. Locomotion dynamics of hunting in wild cheetahs. Nature. 2013;498(7453):185–189.
  • Patel A, Braae M. Rapid turning at high-speed: Inspirations from the cheetah's tail. 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS); IEEE; 2013. p. 5506–5511.
  • Patel A, Braae M. An actuated tail increases rapid acceleration manoeuvres in quadruped robots. Innovations and advances in computing, informatics, systems sciences, networking and engineering; Springer; 2015. p. 69–76.
  • Johnson AM, Libby T, Chang-Siu E, et al. Tail assisted dynamic self righting. Adaptive mobile robotics. World Scientific; 2012. p. 611–620.
  • Libby T, Johnson AM, Chang-Siu E, et al. Comparative design, scaling, and control of appendages for inertial reorientation. IEEE Trans Robot. 2016;32(6):1380–1398.
  • Kohut N, Haldane D, Zarrouk D, et al. Effect of inertial tail on yaw rate of 45 gram legged robot. International conference on climbing and walking robots and the support technologies for mobile machines; 2012. p. 157–164.
  • Fukushima T, Nishikawa S, Kuniyoshi Y. Active bending motion of pole vault robot to improve reachable height. 2014 IEEE international conference on robotics and automation (ICRA); IEEE; 2014. p. 4208–4214.
  • Basu C, Wilson AM, Hutchinson JR. The locomotor kinematics and ground reaction forces of walking giraffes. J Experi Biol. 2019;222(2):jeb159277.
  • Dawson TJ, Taylor CR. Energetic cost of locomotion in kangaroos. Nature. 1973;246(5431):313.
  • Kram R, Dawson TJ. Energetics and biomechanics of locomotion by red kangaroos (macropus rufus). Comparative Biochem Physiol Part B: Biochem Mol Biol. 1998;120(1):41–49.
  • Ackerman J, Seipel J. Energy efficiency of legged robot locomotion with elastically suspended loads. IEEE Trans Robot. 2013;29(2):321–330.
  • Steve M. Simscape multibody contact forces library. 2020. retrieved September 27, 2019. Available From: https://github.com/mathworks/Simscape-Multibody-Contact-Forces-Library/releases/tag/20.1.5.1.
  • Spenko MJ, Haynes GC, Saunders J, et al. Biologically inspired climbing with a hexapedal robot. J Field Robot. 2008;25(4-5):223–242.
  • Spagna JC, Goldman DI, Lin PC, et al. Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain. Bioinspir Biomim. 2007;2(1):9.
  • Mathis A, Mamidanna P, Cury KM, et al. Deeplabcut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci. 2018;21(9):1281–1289.
  • Wolf Z, Jusufi A, Vogt D, et al. Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model. Bioinspir Biomim. 2020;15(4):046008
  • Wright B, Vogt DM, Wood RJ, et al. Soft sensors for curvature estimation under water in a soft robotic fish. Proceedings of 2nd IEEE international conference on soft robotics (RoboSoft); 2019. p. 367–371.
  • Jusufi A, Vogt DM, Wood RJ, et al. Undulatory swimming performance and body stiffness modulation in a soft robotic fish-inspired physical model. Soft Robot. 2017;4(3):202–210.
  • Lin Y, Siddall R, Schwab F, et al. Modeling and control of a soft robotic fishtail with integrated soft sensing. Adv Intell Syst. 2021. In press. doi:10.1002/aisy.202000244