1,102
Views
0
CrossRef citations to date
0
Altmetric
Full Papers

Design and experimental verification of a hoverable quadrotor composed of only clockwise rotors

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 667-678 | Received 26 Oct 2022, Accepted 08 Feb 2023, Published online: 10 Mar 2023

References

  • Tsouros DC, Bibi S, Sarigiannidis PG. A review on UAV-based applications for precision agriculture. Information. 2019;10(11):349.
  • Villa DKD, Brandão AS, Sarcinelli-Filho M. A survey on load transportation using multirotor UAVs. J Intel Robot Syst. 2020 May;98(2):267–296.
  • Ikeda T, Yasui S, Minamiyama S, et al. Stable impact and contact force control by UAV for inspection of floor slab of bridge. Adv Robot. 2018;32(19):1061–1076.
  • Mochida S, Matsuda R, Ibuki T, et al. A geometric method of hoverability analysis for multirotor UAVs with upward-oriented rotors. IEEE Trans Robot. 2021;37(5):1765–1779.
  • Vey D, Lunze J. Structural reconfigurability analysis of multirotor UAVs after actuator failures. In: 2015 54th IEEE Conference on Decision and Control (CDC); 2015. p. 5097–5104.
  • Ryll M, Bülthoff HH, Giordano PR. Modeling and control of a quadrotor UAV with tilting propellers. In: 2012 IEEE International Conference on Robotics and Automation (ICRA); 2012. p. 4606–4613.
  • Rajappa S, Ryll M, Bülthoff HH, et al. Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers. In: 2015 IEEE International Conference on Robotics and Automation (ICRA); 2015. p. 4006–4013.
  • Rashad R, Engelen JBC, Stramigioli S. Energy tank-based wrench/impedance control of a fully-actuated hexarotor: a geometric port-hamiltonian approach. In: 2019 International Conference on Robotics and Automation (ICRA); 2019. p. 6418–6424.
  • Mueller MW, D'Andrea R. Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers. In: 2014 IEEE International Conference on Robotics and Automation (ICRA); 2014. p. 45–52.
  • Kumar R, Sridhar S, Cazaurang F, et al. Reconfigurable fault-tolerant tilt-rotor quadcopter system. In: Dynamic Systems and Control Conference (DSCC); Vol. 51913; American Society of Mechanical Engineers; 2018. p. V003T37A008.
  • Yang D, Li Z, Zhou P, et al. Control system design for tiltable quad-rotor with propeller failure. In: 2020 Chinese Automation Congress (CAC); 2020. p. 7473–7478.
  • Nikou A, Gavridis GC, Kyriakopoulos KJ. Mechanical design, modelling and control of a novel aerial manipulator. In: 2015 IEEE International Conference on Robotics and Automation (ICRA); 2015. p. 4698–4703.
  • Brescianini D, D'Andrea R. Design, modeling and control of an omni-directional aerial vehicle. In: 2016 IEEE International Conference on Robotics and Automation (ICRA); 2016. p. 3261–3266.
  • Mochida S, Ryotaro O, Kawagoe T, et al. Hoverability analysis and development of a quadrotor with only clockwise rotors. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2022. p. TuC–1.1.
  • Murray RM, Li Z, Sastry SS. A mathematical introduction to robotic manipulation. Boca Raton: CRC press; 2017.
  • Matsuda R, Ibuki T, Sampei M. A hoverability analysis method for multirotor UAVs with a case study on fault tolerance. In: 2018 IEEE Conference on Decision and Control (CDC); 2018. p. 4264–4269.
  • Khalil H. Nonlinear control. New York: Pearson Education; 2015.
  • Bouabdallah S, Siegwart R. Full control of a quadrotor. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); IEEE; 2007. p. 153–158.