242
Views
3
CrossRef citations to date
0
Altmetric
Full Papers

Real-time motion planning for an autonomous mobile robot with wheel-ground adhesion constraint

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 649-666 | Received 20 Oct 2022, Accepted 20 Feb 2023, Published online: 08 Mar 2023

References

  • Ben-Ari M, Mondada F. Robots and their applications. Elements of robotics. Cham: Springer International Publishing; 2018; p. 1–20.
  • González D, Pérez J, Milanés V, et al. A review of motion planning techniques for automated vehicles. IEEE Trans Intell Transp Syst. 2016;17(4):1135–1145.
  • Bacha A, Bauman C, Faruque R, et al. Odin: team VictorTango's entry in the DARPA urban challenge. J Field Robot. 2008;25(8):467–492.
  • Bohren J, Foote T, Keller J, et al. Little Ben: the Ben Franklin racing team's entry in the 2007 DARPA urban challenge. J Field Robot. 2008;25(9):598–614.
  • McNaughton M, Urmson C, Dolan JM, et al. Motion planning for autonomous driving with a conformal spatiotemporal lattice. 2011 IEEE International Conference on Robotics and Automation, Shanghai, China. 2011. p. 4889–4895. doi:10.1109/ICRA.2011.5980223.
  • Ziegler J, Stiller C. Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA. 2009. p. 1879–1884. doi:10.1109/IROS.2009.5354448.
  • Elbanhawi M, Simic M. Sampling-based robot motion planning: a review. IEEE Access. 2014;2:56–77. doi:10.1109/ACCESS.2014.2302442.
  • Kuwata Y, Teo J, Fiore G, et al. Real-time motion planning with applications to autonomous urban driving. IEEE Trans Control Syst Technol. 2009;17(5):1105–1118. doi:10.1109/TCST.2008.2012116.
  • Mohammed H, Romdhane L, Jaradat MA. RRT* N: An efficient approach to path planning in 3D for static and dynamic environments. Adv Robot. 2021;35(3–4):168–180.
  • Motonaka K, Miyoshi S. Obstacle avoidance using buffered voronoi cells based on local information from a laser range scanner. Adv Robot. 2023;37(1-2):73–86. doi:10.1080/01691864.2022.2121616.
  • Xiong C, Chen D, Lu D, et al. Path planning of multiple autonomous marine vehicles for adaptive sampling using voronoi-based ant colony optimization. Rob Auton Syst. 2019;115:90–103. doi:10.1016/j.robot.2019.02.002.
  • Magid E, Lavrenov R, Afanasyev I. Voronoi-based trajectory optimization for UGV path planning. 2017 International Conference on Mechanical, System and Control Engineering (ICMSC), St. Petersburg, Russia. 2017. p. 383–387. doi:10.1109/ICMSC.2017.7959506.
  • Arnaoot HM, Abdin HA, editors. Visibility graph-based path planning algorithm safety evaluation and optimization. 2022 International Telecommunications Conference (ITC-Egypt), Alexandria. IEEE; 2022.
  • Kunchev V, Jain L, Ivancevic V, et al., editors. Path planning and obstacle avoidance for autonomous mobile robots: a review. Berlin: Springer; 2006.
  • Malone N, Chiang H, Lesser K, et al. Hybrid dynamic moving obstacle avoidance using a stochastic reachable set-based potential field. IEEE Trans Robot. 2017;33(5):1124–1138. doi:10.1109/TRO.2017.2705034.
  • Minguez J, Lamiraux F, Laumond J-P. Motion planning and obstacle avoidance. In: Siciliano B, Khatib O, editors. Springer handbook of robotics. Cham: Springer International Publishing; 2016. p. 1177–1202.
  • Ge SS, Cui YJ. Dynamic motion planning for mobile robots using potential field method. Auton Robots. 2002;13(3):207–222. doi:10.1023/a:1020564024509.
  • Kim TH, Kon K, Matsuno F. Region with velocity constraints: map information and its usage for safe motion planning of a mobile robot in a public environment. Adv Robot. 2016;30(10):635–651.
  • Molinos EJ, Llamazares Á, Ocaña M. Dynamic window based approaches for avoiding obstacles in moving. Rob Auton Syst. 2019;118:112–130. doi:10.1016/j.robot.2019.05.003.
  • Kwakernaak H, Sivan R. Linear optimal control systems. New York (NY): Wiley-Interscience; 1972.
  • Weiguo W, Huitang C, Peng-Yung W, editors. Optimal motion planning for a wheeled mobile robot. Proceedings 1999 IEEE International Conference on Robotics and Automation; Detroit, MI. IEEE; 1999.
  • Shen P, Zhang X, Fang Y. Complete and time-optimal path-constrained trajectory planning with torque and velocity constraints: theory and applications. IEEE/ASME Trans Mechatron. 2018;23(2):735–746. doi:10.1109/TMECH.2018.2810828.
  • Petrinić T, Brezak M, Petrović I. Time-optimal velocity planning along predefined path for static formations of mobile robots. Int J Control Autom Syst. 2017;15(1):293–302. doi:10.1007/s12555-015-0192-y.
  • Consolini L, Locatelli M, Minari A, et al. An optimal complexity algorithm for minimum-time velocity planning. Syst Control Lett. 2017;103:50–57. doi:10.1016/j.sysconle.2017.02.001.
  • Kim J, Kim BK. Cornering trajectory planning avoiding slip for differential-wheeled mobile robots. IEEE Trans Ind Electron. 2019;67(8):6698–6708. doi:10.1109/TIE.2019.2941156.
  • Xiong L, Fu Z, Zeng D, et al. An optimized trajectory planner and motion controller framework for autonomous driving in unstructured environments. Sensors. 2021;21(13):4409.
  • Diachuk M, Easa SM. Motion planning for autonomous vehicles based on sequential optimization. Vehicles. 2022;4(2):344–374.
  • Okuyama I, Maximo MR, Afonso RJ. Minimum-time trajectory planning for a differential drive mobile robot considering non-slipping constraints. J Control Autom Electr Syst. 2021;32(1):120–131.
  • Micheli F, Bersani M, Arrigoni S, et al. NMPC trajectory planner for urban autonomous driving. Veh Syst Dyn. 2022:1–23. doi:10.1080/00423114.2022.2081220.
  • Gao J, Pashkevich A, Claveau F, et al. Optimal motion generation for mobile robot with non-skidding constraint. 2019 IEEE International Conference on Mechatronics (ICM), Ilmenau, Germany. 2019. p. 628–633. doi:10.1109/ICMECH.2019.8722896.
  • Gao J, Pashkevich A, Claveau F, et al. Real time motion generation for mobile robot. IFAC-PapersOnLine. 2019;52(13):265–270. doi:10.1016/j.ifacol.2019.11.179.
  • Jazar RN. Vehicle dynamics: theory and application. Cham: Springer; 2017.
  • Rill G. TMeasy – a handling tire model based on a three-dimensional slip approach. Proceedings of the XXIII International Symposium on Dynamic of Vehicles on Roads and on Tracks (IAVSD 2013), Quingdao, China. 2013.
  • Bobrow JE, Dubowsky S, Gibson J. Time-optimal control of robotic manipulators along specified paths. Int J Rob Res. 1985;4(3):3–17.
  • Jin H, Zhou M. On the road friction recognition based on the driving wheels deceleration. 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 2014, pp. 1–8, doi: 10.1109/ITEC-AP.2014.6940633.
  • Ito N, Okuda H, Suzuki T. Configuration-aware model predictive motion planning for tractor–trailer mobile robot. Adv Robot. 2022:1–15. doi:10.1080/01691864.2022.2126733.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.