94
Views
0
CrossRef citations to date
0
Altmetric
Full Papers

Motion control of a snake robot on multiple inclined planes

ORCID Icon & ORCID Icon
Pages 784-800 | Received 21 Nov 2023, Accepted 05 Apr 2024, Published online: 25 Apr 2024

References

  • Hirose S. Biologically inspired robots: snake-like locomotor and manipulator. London, UK: Oxford University Press; 1993.
  • Mori M, Hirose S. Three-dimensional serpentine motion and lateral rolling by active cord mechanism ACM-R3. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems; Lausanne, Switzerland: IEEE; 2002. p. 829–834.
  • Ye C, Ma S, Li B, et al. Modular universal unit for a snake-like robot and reconfigurable robots. Adv Robot. 2009;23(7-8):865–887. doi: 10.1163/156855309X443061
  • Kamegawa T, Harada T, Gofuku A. Realization of cylinder climbing locomotion with helical form by a snake robot with passive wheels. In: Proceedings IEEE International Conference on Robotics and Automation; Kobe, Japan: IEEE; 2009. p. 3067–3072.
  • Liljebäck P, Haugstuen IU, Pettersen K. Path following control of planar snake robots using a cascaded approach. IEEE Trans Control Syst Technol. 2012;20(1):111–126.
  • Shapiro A, Greenfield A, Choset H. Frictional compliance model development and experiments for snake robot climbing. In: Proceedings IEEE International Conference on Robotics and Automation; Rome, Italy: IEEE; 2007. p. 574–579.
  • Rollinson D, Choset H. Gait-based compliant control for snake robots. In: Proceedings IEEE International Conference on Robotics and Automation; Karlsruhe, Germany: IEEE; 2013. p. 5123–5128.
  • Sverdrup-Thygeson J, Kelasidi E, Pettersen KY, et al. The underwater swimming manipulator–a bioinspired solution for subsea operations. IEEE J Oceanic Eng. 2018;43(2):402–417. doi: 10.1109/JOE.48
  • Rollinson D, Choset H. Pipe network locomotion with a snake robot. J Field Rob. 2016;33(3):322–336. doi: 10.1002/rob.2016.33.issue-3
  • Wright C, Buchan A, et al. Design and architecture of the unified modular snake robot. In: Proceedings IEEE International Conference on Robotics and Automation; Saint Paul, MN, USA: IEEE; 2012. p. 4347–4354.
  • Kamegawa T, Baba T, Gofuku A. V-shift control for snake robot moving the inside of a pipe with helical rolling motion. In: Proceedings IEEE International Symposium on Safety, Security and Rescue Robotics; Kyoto, Japan: IEEE; 2011. p. 1–6.
  • Qi W, Kamegawa T, Gofuku A. Helical wave propagation motion for a snake robot on a vertical pipe containing a branch. J Artificial Life Rob. 2018;23(4):515–522. doi: 10.1007/s10015-018-0479-1
  • Takemori T, Tanaka M, Matsuno F. Ladder climbing with a snake robot. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems; Madrid, Spain: IEEE; 2018. p. 1–9.
  • Takemori T, Tanaka M, Matsuno F. Gait design of a snake robot by connecting curve segments and experimental demonstration. IEEE Trans Rob. 2018;34(5):1384–1391. doi: 10.1109/TRO.2018.2830346
  • Lipkin K, Brown I, et al. Differentiable and piecewise differentiable gaits for snake robots. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems; San Diego, CA, USA: IEEE; 2007. p. 1864–1869.
  • Gong C, Tesch M, et al. Snakes on an inclined plane: Learning an adaptive sidewinding motion for changing slopes. In: Proceedings IEEE International Conference on Intelligent Robots and Systems; Chicago, IL, USA: IEEE;; 2013. p. 1114–1119.
  • Yamada H, Hirose S. Study of active cord mechanism: approximations to continuous curves of a multi-joint body (Japanese). J Rob Soc Japan. 2008;26(1):110–120. doi: 10.7210/jrsj.26.110
  • Barazandeh F, Bahr B, Moradi A. How self-locking reduces actuators torque in climbing snake robots. In: Proceedings IEEE/ASME International Conference on Advanced Intelligent Mechatronics; Zurich, Switzerland: IEEE; 2007. p. 1–6.
  • Maneewarn T, Maneechai B. Design of pipe crawling gaits for a snake robot. In: Proceedings IEEE International Conference on Robotics and Biomimetics; Bangkok, Thailand: IEEE; 2008. p. 1–6.
  • Tanaka M, Tanaka K. Control of a snake robot for ascending and descending steps. IEEE Trans Rob. 2015;31(2):511–520. doi: 10.1109/TRO.2015.2400655
  • Tanaka M, Nakajima M, Suzuki Y, et al. Development and control of articulated mobile robot for climbing steep stairs. IEEE ASME Trans Mechatron. 2018;23(3):531–541. doi: 10.1109/TMECH.2018.2792013
  • Nakajima M, Tanaka M, Tanaka K, et al. Motion control of a snake robot moving between two non-parallel planes. Adv Robot. 2018;32(10):559–573. doi: 10.1080/01691864.2018.1458653
  • Kon K, Tanaka M, Tanaka K. Mixed integer programming-based semiautonomous step climbing of a snake robot considering sensing strategy. IEEE Trans Control Syst Technol. 2015;24(1):252–264. doi: 10.1109/TCST.2015.2429615
  • Tanaka M, Matsuno F. Modeling and control of head raising snake robots by using kinematic redundancy. J Intell Rob Syst. 2014;75(1):53–69. doi: 10.1007/s10846-013-9866-y
  • Tanaka M, Matsuno F. Control of snake robots with switching constraints: trajectory tracking with moving obstacle. Adv Robot. 2014;28(6):415–429. doi: 10.1080/01691864.2013.867285

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.