536
Views
0
CrossRef citations to date
0
Altmetric
Survey Paper

Beyond jamming grippers: granular material in robotics

ORCID Icon, ORCID Icon & ORCID Icon
Pages 715-729 | Received 13 Sep 2023, Accepted 02 Mar 2024, Published online: 21 May 2024

References

  • Fitzgerald SG, Delaney GW, Howard D. A review of jamming actuation in soft robotics. Actuators. 2020;9(4):104. doi: 10.3390/act9040104
  • Bagnold RA. The physics of blown sand and desert dunes. London: Methuen; 1941.
  • Deresiewicz H. Mechanics of granular matter. Adv Appl Mech. 1958;5:233–306. doi: 10.1016/S0065-2156(08)70021-8
  • Schofield AN, Wroth P. Critical state soil mechanics. Vol. 310. London: McGraw-hill; 1968.
  • Rosato A, Strandburg KJ, Prinz F, et al. Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys Rev Lett. 1987;58(10):1038–1040. doi: 10.1103/PhysRevLett.58.1038
  • Savage SB. The mechanics of rapid granular flows. Adv Appl Mech. 1984;24:289–366. doi: 10.1016/S0065-2156(08)70047-4
  • Perovskii AP. Universal grippers for industrial robots. Russ Eng J. 1980;60(8):3–4. [not available online].
  • Brown E, Rodenberg N, Amend J, et al. Universal robotic gripper based on the jamming of granular material. Proc Natl Acad Sci. 2010;107(44):18809–18814. doi: 10.1073/pnas.1003250107
  • Schmidt I. Flexible moulding jaws for grippers. Ind Robot An Int J. 1978;5(1):24–26. doi: 10.1108/eb004491
  • Rienmüller T, Weissmantel H. A shape adaptive gripper finger for robots. In: 18. International Symposium on Industrial Robots; 1988. p. 241–250.
  • Nishida T, Shigehisa D, Kawashima N, et al. Development of universal jamming gripper with a force feedback mechanism. In: 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS); IEEE; 2014. p. 242–246.
  • Meuleman S, Balt V, Jarray A, et al. Investigation of particle properties on the holding force in a granular gripper. In: PARTICLES V, Proceedings of the V-th International Conference on Particle-Based Methods, Fundamentals and applications; CIMNE; 2017. p. 588–599.
  • Wang Y, Yang Z, Zhou H, et al. Inflatable particle-jammed robotic gripper based on integration of positive pressure and partial filling. Soft Robot. 2022;9(2):309–323. doi: 10.1089/soro.2020.0139
  • Bartkowski P, Suwała G, Zalewski R. Temperature and strain rate effects of jammed granular systems: experiments and modelling. Granul Matter. 2021;23(4):79. doi: 10.1007/s10035-021-01138-x
  • Coombe C, Brett J, Mishra R, et al. Active vibration fluidization for granular jamming grippers; 2022. Preprint arXiv:2212.06498.
  • Al Abeach L, Nefti-Meziani S, Theodoridis T, et al. A variable stiffness soft gripper using granular jamming and biologically inspired pneumatic muscles. J Bionic Eng. 2018;15(2):236–246. doi: 10.1007/s42235-018-0018-8
  • Li Y, Chen Y, Yang Y, et al. Passive particle jamming and its stiffening of soft robotic grippers. IEEE Trans Robot. 2017;33(2):446–455. doi: 10.1109/TRO.2016.2636899
  • Li Y, Chen Y, Li Y. Distributed design of passive particle jamming based soft grippers. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft); IEEE; 2018. p. 547–552.
  • Ranzani T, Cianchetti M, Gerboni G, et al. A soft modular manipulator for minimally invasive surgery: design and characterization of a single module. IEEE Trans Robot. 2016;32(1):187–200. doi: 10.1109/TRO.2015.2507160
  • Wei Y, Chen Y, Ren T, et al. A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming. Soft Robot. 2016;3(3):134–143. doi: 10.1089/soro.2016.0027
  • Jiang Y, Chen D, Liu C, et al. Chain-like granular jamming: a novel stiffness-programmable mechanism for soft robotics. Soft Robot. 2019;6(1):118–132. doi: 10.1089/soro.2018.0005
  • Yang Y, Zhang Y, Kan Z, et al. Hybrid jamming for bioinspired soft robotic fingers. Soft Robot. 2020;7(3):292–308. doi: 10.1089/soro.2019.0093
  • Wall V, Deimel R, Brock O. Selective stiffening of soft actuators based on jamming. In: 2015 IEEE International Conference on Robotics and Automation (ICRA); IEEE; 2015. p. 252–257.
  • Zhao Y, Shan Y, Zhang J, et al. A soft continuum robot, with a large variable-stiffness range, based on jamming. Bioinspir Biomim. 2019;14(6):066007. doi: 10.1088/1748-3190/ab3d1b
  • Ruotolo W, Roig FS, Cutkosky MR. Load-sharing in soft and spiny paws for a large climbing robot. IEEE Robot Automat Lett. 2019;4(2):1439–1446. doi: 10.1109/LSP.2016.
  • Harada K, Nagata K, Rojas J, et al. Proposal of a shape adaptive gripper for robotic assembly tasks. Adv Robot. 2016;30(17-18):1186–1198. doi: 10.1080/01691864.2016.1209431
  • Park W, Lee D, Bae J. A hybrid jamming structure combining granules and a chain structure for robotic applications. Soft Robot. 2022;9(4):669–679. doi: 10.1089/soro.2020.0209
  • Wei Y, Chen Y, Yang Y, et al. A soft robotic spine with tunable stiffness based on integrated ball joint and particle jamming. Mechatronics. 2016;33:84–92. doi: 10.1016/j.mechatronics.2015.11.008
  • Götz H, Santarossa A, Sack A, et al. Soft particles reinforce robotic grippers: robotic grippers based on granular jamming of soft particles. Granul Matter. 2022;24(1):1–9. doi: 10.1007/s10035-021-01137-y
  • Jiang A, Xynogalas G, Dasgupta P, et al. Design of a variable stiffness flexible manipulator with composite granular jamming and membrane coupling. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; IEEE; 2012. p. 2922–2927.
  • Li Y, Chen Y, Yang Y, et al. Soft robotic grippers based on particle transmission. IEEE ASME Trans Mechatron. 2019;24(3):969–978. doi: 10.1109/TMECH.3516
  • Zhou J, Chen Y, Hu Y, et al. Adaptive variable stiffness particle phalange for robust and durable robotic grasping. Soft Robot. 2020;7(6):743–757. doi: 10.1089/soro.2019.0089
  • Jiang A, Adejokun S, Faragasso A, et al. The granular jamming integrated actuator. In: 2014 International Conference on Advanced Robotics and Intelligent Systems (ARIS); IEEE; 2014. p. 12–17.
  • Loeve AJ, van de Ven OS, Vogel JG, et al. Vacuum packed particles as flexible endoscope guides with controllable rigidity. Granul Matter. 2010;12(6):543–554. doi: 10.1007/s10035-010-0193-8
  • Cianchetti M, Ranzani T, Gerboni G, et al. Stiff-flop surgical manipulator: mechanical design and experimental characterization of the single module. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; IEEE; 2013. p. 3576–3581.
  • Cavallo A, Brancadoro M, Tognarelli S, et al. A soft retraction system for surgery based on ferromagnetic materials and granular jamming. Soft Robot. 2019;6(2):161–173. doi: 10.1089/soro.2018.0014
  • Cheng NG, Lobovsky MB, Keating SJ, et al. Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. In: 2012 IEEE International Conference on Robotics and Automation; IEEE; 2012. p. 4328–4333.
  • Steltz E, Mozeika A, Rembisz J, et al. Jamming as an enabling technology for soft robotics. In: Electroactive Polymer Actuators and Devices (EAPAD) 2010; Vol. 7642; Spie; 2010. p. 640–648.
  • Xiong X, Ames AD, Goldman DI. A stability region criterion for flat-footed bipedal walking on deformable granular terrain. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); IEEE; 2017. p. 4552–4559.
  • Fujita M, Ikeda S, Fujimoto T, et al. Development of universal vacuum gripper for wall-climbing robot. Adv Robot. 2018;32(6):283–296. doi: 10.1080/01691864.2018.1447238
  • Hauser S, Mutlu M, Freundler F, et al. Stiffness variability in jamming of compliant granules and a case study application in climbing vertical shafts. In: 2018 IEEE International Conference on Robotics and Automation (ICRA); IEEE; 2018. p. 1559–1566.
  • Li L, Liu Z, Zhou M, et al. Flexible adhesion control by modulating backing stiffness based on jamming of granular materials. Smart Mater Struct. 2019;28(11):115023. doi: 10.1088/1361-665X/ab46f3
  • Hauser S, Eckert P, Tuleu A, et al. Friction and damping of a compliant foot based on granular jamming for legged robots. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob); IEEE; 2016. p. 1160–1165.
  • Hauser S, Mutlu M, Banzet P, et al. Compliant universal grippers as adaptive feet in legged robots. Adv Robot. 2018;32(15):825–836. doi: 10.1080/01691864.2018.1496851
  • Chopra S, Tolley MT, Gravish N. Granular jamming feet enable improved foot-ground interactions for robot mobility on deformable ground. IEEE Robot Automat Lett. 2020;5(3):3975–3981. doi: 10.1109/LSP.2016.
  • Zalewski R, Szmidt T. Application of special granular structures for semi-active damping of lateral beam vibrations. Eng Struct. 2014;65:13–20. doi: 10.1016/j.engstruct.2014.01.035
  • Makowski M, Zalewski R. Vibration analysis for vehicle with vacuum packed particles suspension. J Theor Appl Mech. 2015;53(1):109–117. doi: 10.15632/jtam-pl.53.1.109
  • Zalewski R, Chodkiewicz P, Shillor M. Vibrations of a mass-spring system using a granular-material damper. Appl Math Model. 2016;40(17-18):8033–8047. doi: 10.1016/j.apm.2016.03.053
  • Sternberger A, Génevaux JM, Pelat A. Experimental analysis of the vibration dissipation induced by granular materials included into a 1 degree of freedom oscillator. Granul Matter. 2019;21(3):57. doi: 10.1007/s10035-019-0905-7
  • Varela-Rosales NR, Santarossa A, Engel M, et al. Granular binary mixtures improve energy dissipation efficiency of granular dampers; 2023. Preprint arXiv:2302.03069.
  • Żurawski M, Zalewski R. Experimental studies on adaptive-passive symmetrical granular damper operation. Materials. 2022;15(17):6170. doi: 10.3390/ma15176170
  • Rodak D, Zalewski R. Innovative controllable torsional damper based on vacuum packed particles. Materials. 2020;13(19):4356. doi: 10.3390/ma13194356
  • Bartkowski P, Bukowiecki H, Gawiński F, et al. Adaptive crash energy absorber based on a granular jamming mechanism. Bull Polish Acad Sci: Tech Sci. 2022;70(1):e139002–e139002.
  • Voronina NN, Horoshenkov KV. A new empirical model for the acoustic properties of loose granular media. Appl Acoust. 2003;64(4):415–432. doi: 10.1016/S0003-682X(02)00105-6
  • Hsu CJ, Johnson DL, Ingale RA, et al. Dynamic effective mass of granular media. Phys Rev Lett. 2009;102(5):058001. doi: 10.1103/PhysRevLett.102.058001
  • Brunet T, Jia X, Mills P. Mechanisms for acoustic absorption in dry and weakly wet granular media. Phys Rev Lett. 2008;101(13):138001. doi: 10.1103/PhysRevLett.101.138001
  • Valenza J, Hsu CJ, Ingale R, et al. Dynamic effective mass of granular media and the attenuation of structure-borne sound. Phys Rev E. 2009;80(5):051304. doi: 10.1103/PhysRevE.80.051304
  • Schunter Jr DJ, Brandenbourger M, Perriseau S, et al. Elastogranular mechanics: buckling, jamming, and structure formation. Phys Rev Lett. 2018;120(7):078002. doi: 10.1103/PhysRevLett.120.078002
  • Steltz E, Mozeika A, Rodenberg N, et al. Jamming skin enabled locomotion. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems; IEEE; 2009. p. 5672–5677.
  • Mozeika A, Steltz E, Jaeger HM. The first steps of a robot based on jamming skin enabled locomotion. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems; IEEE; 2009. p. 408–409.
  • Brigido-González JD, Burrow SG, Woods BKS. Switchable stiffness morphing aerostructures based on granular jamming. J Intell Mater Syst Struct. 2019;30(17):2581–2594. doi: 10.1177/1045389X19862372
  • Wang H, Totaro M, Beccai L. Progress and challenges. Adv Sci. 2018;5(9):1800541. doi: 10.1002/advs.v5.9
  • Mohammadi A, Xu Y, Tan Y, et al. Magnetic-based soft tactile sensors with deformable continuous force transfer medium for resolving contact locations in robotic grasping and manipulation. Sensors. 2019;19(22):4925. doi: 10.3390/s19224925
  • Fang B, Xia Z, Sun F, et al. Soft magnetic fingertip with particle jamming structure for tactile perception and grasping. IEEE Trans Ind Electron. 2022;70(6):6027–6035. doi: 10.1109/TIE.2022.3201305
  • Follmer S, Leithinger D, Olwal A, et al. Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology; 2012. p. 519–528.
  • Stanley AA, Gwilliam JC, Okamura AM. Haptic jamming: a deformable geometry, variable stiffness tactile display using pneumatics and particle jamming. In: 2013 World Haptics Conference (WHC); IEEE; 2013. p. 25–30.
  • Stanley AA, Okamura AM. Controllable surface haptics via particle jamming and pneumatics. IEEE Trans Haptics. 2015;8(1):20–30. doi: 10.1109/TOH.2015.2391093
  • Stanley AA, Hata K, Okamura AM. Closed-loop shape control of a haptic jamming deformable surface. In: 2016 IEEE International Conference on Robotics and Automation (ICRA); IEEE; 2016. p. 2718–2724.
  • Stanley AA, Okamura AM. Deformable model-based methods for shape control of a haptic jamming surface. IEEE Trans Vis Comput Graph. 2016;23(2):1029–1041. doi: 10.1109/TVCG.2016.2525788
  • Stanley AA, Gwilliam JC, Judkins TN, et al. A haptic display for medical simulation using particle jamming. In: Proc. Medicine Meets Virtual Reality; Vol. 20; 2013. p. 2.
  • Genecov AM, Stanley AA, Okamura AM. Perception of a haptic jamming display: just noticeable differences in stiffness and geometry. In: 2014 IEEE Haptics Symposium; IEEE; 2014. p. 333–338.
  • Li M, Ranzani T, Sareh S, et al. Multi-fingered haptic palpation utilizing granular jamming stiffness feedback actuators. Smart Mater Struct. 2014;23(9):095007. doi: 10.1088/0964-1726/23/9/095007
  • Stanley AA, Mayhew D, Irwin R, et al. Integration of a particle jamming tactile display with a cable-driven parallel robot. In: Haptics: Neuroscience, Devices, Modeling, and Applications, 9th International Conference, EuroHaptics 2014, Versailles, France, June 24–26, 2014, Proceedings, Part II 9; Springer; 2014. p. 258–265.
  • Mazzone A, Spagno C, Kunz A. The hovermesh: a deformable structure based on vacuum cells: new advances in the research of tangible user interfaces. In: Proceedings of the 2004 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology; 2004. p. 187–193.
  • Usevitch NS, Khanna R, Carrera RM, et al. End effector for a kinesthetic haptic device capable of displaying variable size and stiffness. In: Haptics: Perception, Devices, Control, and Applications, 10th International Conference, EuroHaptics 2016, London, UK, July 4–7, 2016, Proceedings, Part II 10; Springer; 2016. p. 363–372.
  • Sikander S, Biswas P, Kulkarni P, et al. Concept development of fixed geometry tactile display using granular jamming. In: 2019 International Symposium on Medical Robotics (ISMR); IEEE; 2019. p. 1–4.
  • He L, Herzig N, de Lusignan S, et al. Granular jamming based controllable organ design for abdominal palpation. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE; 2018. p. 2154–2157.
  • Koehler M, Usevitch NS, Okamura AM. Model-based design of a soft 3-d haptic shape display. IEEE Trans Robot. 2020;36(3):613–628. doi: 10.1109/TRO.8860
  • Mitsuda T, Kuge S, Wakabayashi M, et al. Wearable force display using a particle mechanical constraint. Presence. 2002;11(6):569–577. doi: 10.1162/105474602321050703
  • Aihara N, Sato T, Koike H. Highly deformable interactive 3D surface display. In: Adjunct Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology; 2012. p. 91–92.
  • Mitsuda T, Kuge S, Wakabayashi M, et al. Wearable haptic display by the use of a particle mechanical constraint. In: Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002; IEEE; 2002. p. 153–158.
  • Thompson-Bean E, Steiner O, McDaid A. A soft robotic exoskeleton utilizing granular jamming. In: 2015 IEEE International Conference On Advanced Intelligent Mechatronics (AIM); IEEE; 2015. p. 165–170.
  • Tsukagoshi H, Fuchigami K, Watari E, et al. Deformable anchor ball for thrown referring to octopus suckers. J Robot Mechatron. 2014;26(4):477–485. doi: 10.20965/jrm.2014.p0477
  • Zubrycki I, Granosik G. Novel haptic device using jamming principle for providing kinaesthetic feedback in glove-based control interface. J Intell & Robot Syst. 2017;85(3-4):413–429. doi: 10.1007/s10846-016-0392-6
  • Sakuma T, Von Drigalski F, Ding M, et al. A universal gripper using optical sensing to acquire tactile information and membrane deformation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); IEEE; 2018. p. 1–9.
  • Sakuma T, Kiyokawa T, Matsubara T, et al. Jamming gripper-inspired soft jig for perceptive parts fixing. IEEE Access. 2023;11:62187–62199. doi: 10.1109/ACCESS.2023.3285810
  • Nedderman RM. Statics and kinematics of granular materials. Vol. 352. Cambridge: Cambridge University Press; 1992.
  • Li C, Hsieh ST, Goldman DI. Multi-functional foot use during running in the zebra-tailed lizard (callisaurus draconoides). J Experim Biol. 2012;215(22):4015–4033. doi: 10.1242/jeb.071837
  • Li C, Umbanhowar PB, Komsuoglu H, et al. Sensitive dependence of the motion of a legged robot on granular media. Proc Natl Acad Sci. 2009;106(9):3029–3034. doi: 10.1073/pnas.0809095106
  • Qian F, Daffon K, Zhang T, et al. An automated system for systematic testing of locomotion on heterogeneous granular media. In: Nature-inspired mobile robotics. World Scientific; 2013. p. 547–554.
  • Li C, Zhang T, Goldman DI. A terradynamics of legged locomotion on granular media. Science. 2013;339(6126):1408–1412. doi: 10.1126/science.1229163
  • Qian F, Zhang T, Korff W, et al. Principles of appendage design in robots and animals determining terradynamic performance on flowable ground. Bioinspir Biomim. 2015;10(5):056014. doi: 10.1088/1748-3190/10/5/056014
  • Aguilar J, Goldman DI. Robophysical study of jumping dynamics on granular media. Nature Phys. 2016;12(3):278–283. doi: 10.1038/nphys3568
  • Hubicki CM, Aguilar JJ, Goldman DI, et al. Tractable terrain-aware motion planning on granular media: an impulsive jumping study. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); IEEE; 2016. p. 3887–3892.
  • Lynch DJ, Lynch KM, Umbanhowar PB. The soft-landing problem: minimizing energy loss by a legged robot impacting yielding terrain. IEEE Robot Automat Lett. 2020;5(2):3658–3665. doi: 10.1109/LSP.2016.
  • Darbois Texier B, Ibarra A, Melo F. Low-resistive vibratory penetration in granular media. PLoS ONE. 2017;12(4):e0175412. doi: 10.1371/journal.pone.0175412
  • Chong B, Wang T, Erickson E, et al. Coordinating tiny limbs and long bodies: geometric mechanics of lizard terrestrial swimming. Proc Natl Acad Sci. 2022;119(27):e2118456119. doi: 10.1073/pnas.2118456119
  • Marvi H, Gong C, Gravish N, et al. Sidewinding with minimal slip: snake and robot ascent of sandy slopes. Science. 2014;346(6206):224–229. doi: 10.1126/science.1255718
  • Sharpe SS, Koehler SA, Kuckuk RM, et al. Locomotor benefits of being a slender and slick sand swimmer. J Experim Biol. 2015;218(3):440–450. doi: 10.1242/jeb.108357
  • Mazouchova N, Umbanhowar PB, Goldman DI. Flipper-driven terrestrial locomotion of a sea turtle-inspired robot. Bioinspir Biomim. 2013;8(2):026007. doi: 10.1088/1748-3182/8/2/026007
  • Sharpe SS, Ding Y, Goldman DI. Environmental interaction influences muscle activation strategy during sand-swimming in the sandfish lizard scincus scincus. J Experim Biol. 2013;216(2):260–274. doi: 10.1242/jeb.070482
  • Bergmann PJ, Pettinelli KJ, Crockett ME, et al. It's just sand between the toes: how particle size and shape variation affect running performance and kinematics in a generalist lizard. J Experim Biol. 2017;220(20):3706–3716. doi: 10.1242/jeb.161109
  • Maladen RD, Ding Y, Li C, et al. Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Science. 2009;325(5938):314–318. doi: 10.1126/science.1172490
  • Maladen RD, Ding Y, Umbanhowar PB, et al. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming. J R Soc Interface. 2011;8(62):1332–1345. doi: 10.1098/rsif.2010.0678
  • Ding Y, Sharpe SS, Masse A, et al. Mechanics of undulatory swimming in a frictional fluid. PLoS Comput Biol. 2012;8(12):e1002810. doi: 10.1371/journal.pcbi.1002810
  • Maladen RD, Ding Y, Umbanhowar PB, et al. Undulatory swimming in sand: experimental and simulation studies of a robotic sandfish. Int J Rob Res. 2011;30(7):793–805. doi: 10.1177/0278364911402406
  • Astley HC, Mendelson III JR, Dai J, et al. Surprising simplicities and syntheses in limbless self-propulsion in sand. J Experim Biol. 2020;223(5):103564. doi: 10.1242/jeb.103564
  • Ding Y, Gravish N, Li C, et al. Comparative studies reveal principles of movement on and within granular media. In: Natural locomotion in fluids and on surfaces: swimming, flying, and sliding. Springer; 2012. p. 281–292.
  • Das R, Babu SPM, Visentin F, et al. An earthworm-like modular soft robot for locomotion in multi-terrain environments. Sci Rep. 2023;13(1):1571. doi: 10.1038/s41598-023-28873-w
  • Naclerio ND, Hubicki CM, Aydin YO, et al. Soft robotic burrowing device with tip-extension and granular fluidization. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); IEEE; 2018. p. 5918–5923.
  • Naclerio ND, Karsai A, Murray-Cooper M, et al. Controlling subterranean forces enables a fast, steerable, burrowing soft robot. Sci Robot. 2021;6(55):eabe2922. doi: 10.1126/scirobotics.abe2922
  • Mickovski S, Bengough A, Bransby M, et al. Material stiffness, branching pattern and soil matric potential affect the pullout resistance of model root systems. Eur J Soil Sci. 2007;58(6):1471–1481. doi: 10.1111/ejs.2007.58.issue-6
  • Tao JJ, Huang S, Tang Y. SBOR: a minimalistic soft self-burrowing-out robot inspired by razor clams. Bioinspir Biomim. 2020;15(5):055003. doi: 10.1088/1748-3190/ab8754
  • Huang S, Tao J. Modeling clam-inspired burrowing in dry sand using cavity expansion theory and dem. Acta Geotechnica. 2020;15(8):2305–2326. doi: 10.1007/s11440-020-00918-8
  • Fujita M, Tadakuma K, Takane E, et al. Variable inner volume mechanism for soft and robust gripping–improvement of gripping performance for large-object gripping. In: 2016 IEEE International Symposium on Safety, Security, and rescue robotics (SSRR); IEEE; 2016. p. 390–395.
  • Ortiz D, Gravish N, Tolley MT. Soft robot actuation strategies for locomotion in granular substrates. IEEE Robot Autom Lett. 2019;4(3):2630–2636. doi: 10.1109/LSP.2016.
  • Li D, Huang S, Tang Y, et al. Compliant fins for locomotion in granular media. IEEE Robot Automat Lett. 2021;6(3):5984–5991. doi: 10.1109/LRA.2021.3084877
  • Du Y, Lam J, Sachanandani K, et al. Modeling the locomotion of articulated soft robots in granular medium. IEEE Robot Automat Lett. 2022;7(3):6495–6502. doi: 10.1109/LRA.2022.3173036
  • Mitarai N, Nori F. Wet granular materials. Adv Phys. 2006;55(1-2):1–45. doi: 10.1080/00018730600626065
  • Huang N, Ovarlez G, Bertrand F, et al. Flow of wet granular materials. Phys Rev Lett. 2005;94(2):028301. doi: 10.1103/PhysRevLett.94.028301
  • Artoni R, Loro G, Richard P, et al. Drag in wet granular materials. Powder Technol. 2019;356:231–239. doi: 10.1016/j.powtec.2019.08.016
  • Than VD, Khamseh S, Tang AM, et al. Basic mechanical properties of wet granular materials: a dem study. J Eng Mechan. 2017;143(1):C4016001.
  • Møller PC, Bonn D. The shear modulus of wet granular matter. Europhys Lett. 2007;80(3):38002. doi: 10.1209/0295-5075/80/38002
  • Scheel M, Seemann R, Brinkmann M, et al. Morphological clues to wet granular pile stability. Nat Mater. 2008;7(3):189–193. doi: 10.1038/nmat2117
  • Yoshii K, Otsuki M. Mechanical and geometrical properties of jammed wet granular materials; 2022. Preprint arXiv:2209.04709.
  • Amend J, Cheng N, Fakhouri S, et al. Soft robotics commercialization: jamming grippers from research to product. Soft Robot. 2016;3(4):213–222. doi: 10.1089/soro.2016.0021
  • Bester CS, Zhao Y, Bares J, et al. Jamming transition in granular systems of regular polygons. In: APS March Meeting Abstracts; Vol. 2017; 2017. p. B14–007.
  • Tuomainen N, Blanco-Mulero D, Kyrki V. Manipulation of granular materials by learning particle interactions. IEEE Robot Automat Lett. 2022;7(2):5663–5670. doi: 10.1109/LRA.2022.3158382
  • Howard D, O'Connor J, Letchford J, et al. A comprehensive dataset of grains for granular jamming in soft robotics: grip strength and shock absorption; 2022. Preprint arXiv:2212.06511.
  • Athanassiadis AG, Miskin MZ, Kaplan P, et al. Particle shape effects on the stress response of granular packings. Soft Matter. 2014;10(1):48–59. doi: 10.1039/C3SM52047A
  • Howard D, O'Connor J, Brett J, et al. Shape, size, and fabrication effects in 3d printed granular jamming grippers. In: 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft); IEEE; 2021. p. 458–464.
  • Karimi MA, Alizadehyazdi V, Busque BP, et al. A boundary-constrained swarm robot with granular jamming. In: 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft); IEEE; 2020. p. 291–296.
  • Toffoli T, Margolus N. Programmable matter: concepts and realization. Phys D, Nonlinear Phenom. 1991;47(1-2):263–272. doi: 10.1016/0167-2789(91)90296-L
  • Tanaka K, Karimi MA, Busque BP, et al. Cable-driven jamming of a boundary constrained soft robot. In: 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft); IEEE; 2020. p. 852–857.
  • Li S, Batra R, Brown D, et al. Particle robotics based on statistical mechanics of loosely coupled components. Nature. 2019;567(7748):361–365. doi: 10.1038/s41586-019-1022-9
  • Nath SB, Gupta H, Chakraborty S, et al. A survey of fog computing and communication: current researches and future directions. arXiv preprint arXiv:180404365. 2018.
  • Hai A. Smart matter: basic introduction and its potential in the future. In: 2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT); IEEE; 2020. p. 148–152.
  • Handy R, Richard O. Formulating the problems for environmental risk assessment of nanomaterials [Environmental science & technology]; 2007.
  • Iyer V, Gaensbauer H, Daniel TL, et al. Wind dispersal of battery-free wireless devices. Nature. 2022;603(7901):427–433. doi: 10.1038/s41586-021-04363-9
  • Fujita M, Tadakuma K, Komatsu H, et al. Jamming layered membrane gripper mechanism for grasping differently shaped-objects without excessive pushing force for search and rescue missions. Adv Robot. 2018;32(11):590–604. doi: 10.1080/01691864.2018.1451368
  • Dierichs K, Menges A. Designing architectural materials: from granular form to functional granular material. Bioinspir Biomim. 2021;16(6):065010. doi: 10.1088/1748-3190/ac2987
  • Conti L. Propulsion in granular media [Google patents]; 2023. US Patent 11,623,703.
  • de Gennes PG. Granular matter: a tentative view. Rev Mod Phys. 1999;71(2):S374–S382. doi: 10.1103/RevModPhys.71.S374
  • Roychand R, Kilmartin-Lynch S, Saberian M, et al. Transforming spent coffee grounds into a valuable resource for the enhancement of concrete strength. J Clean Prod. 2023;419:138205. doi: 10.1016/j.jclepro.2023.138205
  • Amend JR, Brown E, Rodenberg N, et al. A positive pressure universal gripper based on the jamming of granular material. IEEE Trans Robot. 2012;28(2):341–350. doi: 10.1109/TRO.2011.2171093