30
Views
0
CrossRef citations to date
0
Altmetric
Full Paper

Investigation of arm stabilization with proprioceptive sensory reflex pathways on a 2-DoF musculoskeletal robot actuated by pneumatic artificial muscles

ORCID Icon, &
Received 29 Dec 2023, Accepted 25 May 2024, Published online: 06 Jun 2024

References

  • Ergen E, Ulkar B. Proprioception and coordination. Clin Sports Med. 2007: 237–245. doi: 10.1016/B978-141602443-9.50021-0.
  • Galloway JC, Koshland GF. General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements. Exp Brain Res. 2002;142:163–180. doi: 10.1007/s002210100882
  • Geyer H, Herr H. A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil Eng. 2010;18(3):263–273. doi: 10.1109/TNSRE.7333
  • Liu X, Rosendo A, Ikemoto S, et al. Robotic investigation on effect of stretch reflex and crossed inhibitory response on bipedal hopping. J R Soc Interface. 2018;15(140):20180024. doi: 10.1098/rsif.2018.0024
  • Kandel ER, Schwartz JH, Jessell TM, et al. Principles of neural science. Vol. 4. New York: McGraw-Hill; 2000.
  • Burdet E, Tee KP, Mareels I, et al. Stability and motor adaptation in human arm movements. Biol Cybern. 2006;94:20–32. doi: 10.1007/s00422-005-0025-9
  • Hunt CC. Mammalian muscle spindle: peripheral mechanisms. Physiol Rev. 1990;70(3):643–663. doi: 10.1152/physrev.1990.70.3.643
  • Jami L. Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiol Rev. 1992;72(3):623–666. doi: 10.1152/physrev.1992.72.3.623
  • Schumacher C, Seyfarth A. Sensor-motor maps for describing linear reflex composition in hopping. Front Comput Neurosci. 2017;11:108. doi: 10.3389/fncom.2017.00108
  • Stollenmaier K, Ilg W, Haeufle DF. Predicting perturbed human arm movements in a neuro-musculoskeletal model to investigate the muscular force response. Front Bioeng Biotechnol. 2020;8:308. doi: 10.3389/fbioe.2020.00308
  • Takahashi R, Wang Y, Wang J, et al. Implementation of basic reflex functions on musculoskeletal robots driven by pneumatic artificial muscles. IEEE Robot Autom Lett. 2023;8(4):1920–1926. doi: 10.1109/LRA.2023.3245403
  • Liu X, Rosendo A, Shimizu M, et al. Improving hopping stability of a biped by muscular stretch reflex. In: 2014 IEEE-RAS International Conference on Humanoid Robots. IEEE; 2014. p. 658–663.
  • Kawaharazuka K, Koga Y, Tsuzuki K, et al. Applications of stretch reflex for the upper limb of musculoskeletal humanoids: protective behavior, postural stability, and active induction. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2020. p. 3598–3603.
  • Yoshimoto T, Nito M, Hashizume W, et al. Monosynaptic facilitation mediated by group ia afferents from deltoid to biceps brachii motoneurons in humans. Exp Brain Res. 2022;240(4):1057–1067. doi: 10.1007/s00221-022-06332-8
  • Naito A, Shindo M, Miyasaka T, et al. Inhibitory projection from brachioradialis to biceps brachii motoneurones in human. Exp Brain Res. 1996;111:483–486. doi: 10.1007/BF00228739
  • Eccles J, Eccles R, Shealy C. An investigation into the effect of degenerating primary afferent fibers on the monosynaptic innervation of motoneurons. J Neurophysiol. 1962;25(4):544–558. doi: 10.1152/jn.1962.25.4.544
  • van Ingen Schenau GJ, Pratt CA, Macpherson JM. Differential use and control of mono-and biarticular muscles. Hum Mov Sci. 1994;13(3-4):495–517. doi: 10.1016/0167-9457(94)90051-5
  • Okadome Y, Nakamura Y, Urai K, et al. Huma: a human-like musculoskeletal robot platform for physical interaction studies. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). IEEE; 2015. p. 676–683.
  • Folgheraiter M, Gini G. Human-like reflex control for an artificial hand. BioSystems. 2004;76(1-3):65–74. doi: 10.1016/j.biosystems.2004.05.007
  • Zhao G, Szymanski F, Seyfarth A. Bio-inspired neuromuscular reflex based hopping controller for a segmented robotic leg. Bioinspir Biomim. 2020;15(2):026007. doi: 10.1088/1748-3190/ab6ed8
  • Chou CP, Hannaford B. Measurement and modeling of mckibben pneumatic artificial muscles. IEEE Trans Rob Autom. 1996;12(1):90–102. doi: 10.1109/70.481753
  • Tondu B, Lopez P. Modeling and control of mckibben artificial muscle robot actuators. IEEE Control Syst Mag. 2000;20(2):15–38. doi: 10.1109/37.833638
  • Daerden F, Lefeber D, et al. Pneumatic artificial muscles: actuators for robotics and automation. Euro J Mech Environ Eng. 2002;47(1):11–21.
  • Kalita B, Leonessa A, Dwivedy SK. A review on the development of pneumatic artificial muscle actuators: force model and application. In: Actuators. Vol. 11. MDPI; 2022. p. 288.
  • Tondu B. What is an artificial muscle? a systemic approach. In: Actuators. Vol. 4. MDPI; 2015. p. 336–352.
  • Klute GK, Czerniecki JM, Hannaford B. Mckibben artificial muscles: pneumatic actuators with biomechanical intelligence. In: 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No. 99TH8399). IEEE; 1999. p. 221–226.
  • Kistemaker DA, Van Soest AJK, Wong JD, et al. Control of position and movement is simplified by combined muscle spindle and golgi tendon organ feedback. J Neurophysiol. 2013;109(4):1126–1139. doi: 10.1152/jn.00751.2012
  • Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 1989;17(4):359–411.
  • Lemon RN. Descending pathways in motor control. Ann Rev Neurosci. 2008;31:195–218. doi: 10.1146/neuro.2008.31.issue-1
  • Hitzmann A, Masuda H, Ikemoto S, et al. Anthropomorphic musculoskeletal 10 degrees-of-freedom robot arm driven by pneumatic artificial muscles. Adv Robot. 2018;32(15):865–878. doi: 10.1080/01691864.2018.1494040
  • Lacquaniti F, Soechting J. Emg responses to load perturbations of the upper limb: effect of dynamic coupling between shoulder and elbow motion. Exp Brain Res. 1986;61:482–496. doi: 10.1007/BF00237573
  • Shemmell J, Krutky MA, Perreault EJ. Stretch sensitive reflexes as an adaptive mechanism for maintaining limb stability. Clin Neurophysiol. 2010;121(10):1680–1689. doi: 10.1016/j.clinph.2010.02.166
  • Weiler J, Gribble PL, Pruszynski JA. Spinal stretch reflexes support efficient control of reaching. J Neurophysiol. 2021;125(4):1339–1347.
  • Perreault E, Viant T. Neural coordination of multijoint stretch reflexes in the human arm. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE; 2006. p. 4389–4392.
  • Sangani SG, Starsky AJ, Mcguire JR, et al. Multijoint reflexes of the stroke arm: neural coupling of the elbow and shoulder. Muscle Nerve. 2007;36(5):694–703. doi: 10.1002/mus.v36:5
  • Haggard P, Wing A. Coordinated responses following mechanical perturbation of the arm during prehension. Exp Brain Res. 1995;102:483–494. doi: 10.1007/BF00230652
  • Matthews P. A study of certain factors influencing the stretch reflex of the decerebrate cat. J Physiol. 1959;147(3):547. doi: 10.1113/jphysiol.1959.sp006261
  • Bennett DJ, De Serres S, Stein R. Gain of the triceps surae stretch reflex in decerebrate and spinal cats during postural and locomotor activities. J Physiol. 1996;496(3):837–850. doi: 10.1113/jphysiol.1996.sp021731
  • Mohseni O, Gagey F, Zhao G, et al. How far are pneumatic artificial muscles from biological muscles? In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2020. p. 1909–1915.
  • Kurtzer IL, Pruszynski JA, Scott SH. Long-latency reflexes of the human arm reflect an internal model of limb dynamics. Curr Biol. 2008;18(6):449–453. doi: 10.1016/j.cub.2008.02.053
  • Lee H, Perreault EJ. Stabilizing stretch reflexes are modulated independently from the rapid release of perturbation-triggered motor plans. Sci Rep. 2019;9(1):13926. doi: 10.1038/s41598-019-50460-1
  • Lacquaniti F, Soechting J. Responses of mono-and bi-articular muscles to load perturbations of the human arm. Exp Brain Res. 1986;65:135–144. doi: 10.1007/BF00243836
  • Pfeifer R, Lungarella M, Iida F. Self-organization, embodiment, and biologically inspired robotics. science. 2007;318(5853):1088–1093. doi: 10.1126/science.1145803
  • Yamada Y, Nishikawa S, Shida K, et al. Neural-body coupling for emergent locomotion: a musculoskeletal quadruped robot with spinobulbar model. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2011. p. 1499–1506.
  • Wang T, Chen X, Qin W. A novel adaptive control for reaching movements of an anthropomorphic arm driven by pneumatic artificial muscles. Appl Soft Comput. 2019;83:105623. doi: 10.1016/j.asoc.2019.105623
  • Liang D, Sun N, Wu Y, et al. Fuzzy-sliding mode control for humanoid arm robots actuated by pneumatic artificial muscles with unidirectional inputs, saturations, and dead zones. IEEE Trans Indust Inf. 2021;18(5):3011–3021. doi: 10.1109/TII.2021.3111655
  • Liang D, Sun N, Wu Y, et al. Energy-based motion control for pneumatic artificial muscle actuated robots with experiments. IEEE Tran Indust Electron. 2021;69(7):7295–7306. doi: 10.1109/TIE.2021.3095788
  • Hitzmann A, Wang Y, Kessler T, et al. Using conductive fabrics as inflation sensors for pneumatic artificial muscles. Adv Robot. 2021;35(16):995–1011. doi: 10.1080/01691864.2021.1957015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.