158
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of cellulose nanowhiskers extracted from alfa fiber and the effect of their dispersion methods on nanocomposite properties

, , , , &
Pages 1899-1912 | Received 19 May 2015, Accepted 20 Mar 2016, Published online: 06 Apr 2016

References

  • Brinchi L, Cotana F, Fortunati E, et al. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr. Polym. 2013;94:154–169.10.1016/j.carbpol.2013.01.033
  • Dufresne A. Polymer nanocomposites from biological sources, 2nd ed. In: Nalwa HS, editor. Encyclopedia of nanoscience and nanotechnology. Valencia, CA: American Scientific Publisher; 2010. p. 219–250.
  • Lu J, Askeland P, Drzal LT. Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer. 2008;49:1285–1296.10.1016/j.polymer.2008.01.028
  • Hammiche D, Boukerrou A, Djidjelli H, et al. Synthesis of a new compatibilisant agent PVC-g-MA and its use in the PVC/alfa composites. J. Appl. Polym. Sci. 2012;124:4352–4361.10.1002/app.v124.5
  • Hammiche D, Boukerrou A, Djidjeli H, et al. Effet d’un nouvel agent de couplage PVC-G-MA sur les propriétés physiques et diélectriques des composites PVC/ALFA [Effect of new compatibilizing agent PVC-g-MA on the physical and electrical properties of PVC/Alfa composites]. Ann. Chim-Sci. Mat. 2011;36:125–137.10.3166/acsm.36.125-137
  • Hammiche D, Boukerrou A, Djidjelli H, et al. Effects of some PVC-grafted maleic anhydrides (PVC- g -MAs) on the morphology, and the mechanical and thermal properties of (alfa fiber)-reinforced PVC composites. J. Vinyl Add. Tech. 2013;19:225–232.10.1002/vnl.v19.4
  • Boukerrou A, Hamour N, Djidjelli H, et al. Effect of the different sizes of the alfa on the physical, morphological and mechanical properties of PVC/alfa composites. Macromol. Symp. 2012;321–322:191–196.10.1002/masy.v321.1
  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF. Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 2012;87:963–979.10.1016/j.carbpol.2011.08.078
  • Rodriguez D, Thielemans NLG, Dufresne A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose. 2006;13:261–270.10.1007/s10570-005-9039-7
  • Abraham E, Deepa B, Pothan LA, et al. Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr. Polym. 2011;86:1468–1475.10.1016/j.carbpol.2011.06.034
  • Dong XM, Revol J-F, Gray DG. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose. 1998;5:19–32.10.1023/A:1009260511939
  • Kaushik A, Singh M. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr. Res. 2011;346:76–85.10.1016/j.carres.2010.10.020
  • Dubis EN, Dubis AT, Morzycki JW. Comparative analysis of plant cuticular waxes using HATR FT-IR reflection technique. J. Mol. Struct. 1999;511–512:173–179.10.1016/S0022-2860(99)00157-X
  • Cao X, Ding B, Yu J, et al. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr. Polym. 2012;90:1075–1080.10.1016/j.carbpol.2012.06.046
  • Tserkia V, Matzinosa P, Kokkoub S, et al. Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Composites Part A. 2005;36:965–974.10.1016/j.compositesa.2004.11.010
  • Araki J, Wada M, Kuga S, et al. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf., A. 1998;142:75–82.10.1016/S0927-7757(98)00404-X
  • Hansen CM, Björkman A. The ultrastructure of wood from a solubility parameter point of view. Holzforschung. 1998;52:335–344.10.1515/hfsg.1998.52.4.335
  • Satyanarayana KG, Gregorio GC, Fernando W. Biodegradable composites based on lignocellulosic fibers – an overview. Prog. Polym. Sci. 2009;34:982–1021.10.1016/j.progpolymsci.2008.12.002
  • Dai D, Fan M, Collins P. Fabrication of nanocelluloses from hemp fibers and their application for the reinforcement of hemp fibers. Ind. Crops Prod. 2013;44:192–199.10.1016/j.indcrop.2012.11.010
  • Oksman K, Etang JA, Mathew AP, et al. Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy. 2011;35:146–152.10.1016/j.biombioe.2010.08.021
  • Durmus A, Kasgoz A, Macosko CW. Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: structural characterization and quantifying clay dispersion by melt rheology. Polymer. 2007;48:4492–4502.10.1016/j.polymer.2007.05.074
  • Huitric J, Ville J, Médéric P, et al. Rheological, morphological and structural properties of PE/PA/nanoclay ternary blends: effect of clay weight fraction. J. Rheol. 2009;53:1101–1119.10.1122/1.3153551
  • Chiu F, Lai S, Chen Y, et al. Investigation on the polyamide 6/organoclay nanocomposites with or without a maleated polyolefin elastomer as a toughener. Polymer. 2005;46:11600–11609.10.1016/j.polymer.2005.09.077
  • Peprnicek T, Duchet J, Kovarova L. Poly(vinyl chloride)/clay nanocomposites: X-ray diffraction, thermal and rheological behaviour. Polym. Degrad. Stab. 2006;91:1855–1860.10.1016/j.polymdegradstab.2005.11.003
  • Chazeau L, Cavaillé jY, Canova G, et al. Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J. Appl. Polym. Sci. 1999;71:1797–1808.10.1002/(ISSN)1097-4628
  • Madaleno L, Schjødt-Thomsen J, Pinto CJ. Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding. Compos. Sci. Technol. 2010;70:804–814.10.1016/j.compscitech.2010.01.016
  • Bueno-Ferrer C, Garrigós MC, Jiménez A. Characterization and thermal stability of poly(vinyl chloride) plasticized with epoxidized soybean oil for food packaging. Polym. Degrad. Stab. 2010;95:2207–2212.10.1016/j.polymdegradstab.2010.01.027
  • Balakrishnana B, Kumarb DS, Yoshidab Y, et al. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Biomaterials. 2005;26:3495–3502.10.1016/j.biomaterials.2004.09.032
  • Ben Azouz K, Ramires EC, Van den Fonteyne W, et al. Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett. 2012;1:236–24010.1021/mz2001737
  • Ahmad EEM, Luyt AS. Morphology, thermal, and dynamic mechanical properties of poly(lactic acid)/sisal whisker nanocomposites. Polym. Compos. 2012;33:1025–1032.10.1002/pc.v33.6
  • Nathanael G, Luc V, Mija A, et al. Innovative green nanocomposites based on silicate clays/lignin/natural fibres. Compos. Sci. Technol. 2009;69:1979–1984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.