233
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Potential use of natural perlite powder as a pozzolanic mineral admixture in Portland cement

, , &
Pages 1930-1944 | Received 30 Nov 2015, Accepted 23 Mar 2016, Published online: 20 Apr 2016

References

  • Damineli BL, Kemeid FM, Aguiar PS, et al. Measuring the eco-efficiency of cement use. Cem. Concr. Compos. 2010;32:555–562.10.1016/j.cemconcomp.2010.07.009
  • Mehta PK. Studies on blended Portland cements containing Santorin earth. Cem. Concr. Res. 1981;11:507–518.10.1016/0008-8846(81)90080-6
  • Yetgin Ş, Çavdar A. Study of effects of natural pozzolan on properties of cement mortars. J. Mater. Civ. Eng. 2006;18:813–816.10.1061/(ASCE)0899-1561(2006)18:6(813)
  • Turanli L, Uzal B, Bektas F. Effect of large amounts of natural pozzolan addition on properties of blended cements. Cem. Concr. Res. 2005;35:1106–1111.10.1016/j.cemconres.2004.07.022
  • Erdem TK, Meral Ç, Tokyay M, et al. Use of perlite as a pozzolanic addition in producing blended cements. Cem. Concr. Compos. 2007;29:13–21.10.1016/j.cemconcomp.2006.07.018
  • Siad H, Mesbah HA, Khelafi H., et al. Effect of mineral admixture on resistance to sulphuric and hydrochloric acid attacks in self-compacting concrete. Can. J. Civ. Eng. 2010;37:441–449.10.1139/L09-157
  • Khan MI, Alhozaimy AM. Properties of natural pozzolan and its potential utilization in environmental friendly concrete. Can. J. Civ. Eng. 2011;38:71–78.10.1139/L10-112
  • Senhadji Y, Escadeillas G, Khelafi H, et al. Evaluation of natural pozzolan for use as supplementary cementitious material. Eur. J. Env. Civ. Eng. 2012;16:77–96.10.1080/19648189.2012.667692
  • Siad H, Kamali-Bernard S, Mesbah HA. Characterization of the degradation of self-compacting concretes in sodium sulfate environment: influence of different mineral admixtures. Constr. Build. Mater. 2013;47:1188–1200.10.1016/j.conbuildmat.2013.05.086
  • Lea FM. The chemistry of cement and concrete. 4th ed. New York, NY: Chemical Publishing (Co); 1998. p. 135.
  • Pacewska B, Blonkowski G, Wilińska I. Investigations of the influence of different fly ashes on cement hydration. J. Therm. Anal. Calorim. 2006;86:179–186.10.1007/s10673-005-7136-7
  • Shannag MJ. High strength concrete containing natural pozzolan and silica fume. Cem. Concr. Compos. 2000;22:399–406.10.1016/S0958-9465(00)00037-8
  • Shannag MJ, Yeginobali A. Properties of pastes, mortars and concretes containing natural pozzolan. Cem. Concr. Res. 1995; 25:647–657.
  • Aghaee K, Foroughi M. Mechanical properties of lightweight concrete partition with a core of textile waste. Adv. Civ. Eng. 2013;2013:1–710.1155/2013/482310
  • Demirboğa R, Örüng İ, Gül R. Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes. Cem. Concr. Res. 2001;31:1627–1632.10.1016/S0008-8846(01)00615-9
  • Yu LH, Ou H, Lee LL. Investigation on pozzolanic effect of perlite powder in concrete. Cem. Concr. Res. 2003;33:73–76.10.1016/S0008-8846(02)00924-9
  • Erdem E. Effect of various additives on the hydration of perlite-gypsum plaster and perlite-portland cement pastes. Turk. J. Chem. 1997;21:209–214.
  • Bektas F, Turanli L, Monteiro PJM. Use of perlite powder to suppress the alkali–silica reaction. Cem. Concr. Res. 2005;35:2014–2017.10.1016/j.cemconres.2004.10.029
  • Ray A, Sriravindrarajah R, Guerbois JP, et al. Evaluation of waste perlite fines in the production of construction materials. J. Therm. Anal. Calorim. 2007;88:279–283.10.1007/s10973-006-8107-z
  • ACI Committee Report 201. Guide to durable concrete. Farmington Hills, MI: American Concrete Institute: ACI Manual of Concrete, Practice; 2001.
  • ASTM C150. Standard specification for Portland cement. West Conshohocken, PA: American Society for Testing and Materials: (ASTM) International; 2002.
  • ASTM C618. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA: American Society for Testing and Materials: (ASTM) International; 2003.
  • ASTM C187. Standard test method for normal consistency of hydraulic cement. West Conshohocken, PA: American Society for Testing and Materials: (ASTM) International; 1998.
  • ASTM C191. Standard test method for time of setting of hydraulic cement by vicat needle. West Conshohocken, PA: American Society for Testing and Materials: (ASTM) International; 2004.
  • EN 196-9. Méthodes d’essais des ciments – Partie 9: Chaleur d’hydratation– Méthode semi-adiabatique [Methods of testing cement ̶ part 9: heat of hydration ̶ semi-adiabatic method]. Paris, France: Comité Européen de Normalisation (CEN). AFNOR; 2004.
  • ASTM C109/C109M. Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] cube specimens). West Conshohocken, PA: American Society for Testing and Materials: (ASTM) International; 2002.
  • ASTM C1437. Standard test method for flow of hydraulic cement mortar. West Conshohocken, PA: American Society for Testing and Materials: (ASTM) International; 2001.
  • ASTM C1012/C1012M. Standard test method for length change of hydraulic-cement mortars exposed to a sulfate solution. West Conshohocken, PA: American Society for Testing and Materials: (ASTM) International; 2010.
  • ASTM C267. Standard test methods for chemical resistance of mortars, grouts, and monolithic surfacings and polymer concretes. West Conshohocken, PA: American Society for Testing and Materials: (ASTM) International; 2001.
  • ASTM C595. Standard specification for blended hydraulic cements. West Conshohocken, PA: American Society for Testing and Materials: (ASTM) International; 2003.
  • ASTM C1157. Standard performance specification for hydraulic cement. West Conshohocken, PA: American Society for Testing and Materials: (ASTM) International; 2003.
  • Brooks JJ, Johari MAM, Mazloom M. Effect of admixtures on the setting times of high-strength concrete. Cem. Concr. Compos. 2000;22:293–301.10.1016/S0958-9465(00)00025-1
  • Batis G, Pantazopoulou P, Tsivilis S, et al. The effect of metakaolin on the corrosion behavior of cement mortars. Cem. Concr. Compos. 2005;27:125–130.10.1016/j.cemconcomp.2004.02.041
  • García de Lomas M, Sánchez de Rojas MI, Frías M. Pozzolanic reaction of a spent fluid catalytic cracking catalyst in FCC-cement mortars. J. Therm. Anal. Calorim. 2007;90:443–447.10.1007/s10973-006-7921-7
  • Lanzón M, García-Ruiz PA. Lightweight cement mortars: advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Constr. Build. Mater. 2008;22:1798–1806.10.1016/j.conbuildmat.2007.05.006
  • Sánchez de Rojas MI, Luxán MP, Frías M, et al. The influence of different additions on portland cement hydration heat. Cem. Concr. Res. 1993;23:46–54.10.1016/0008-8846(93)90134-U
  • Ghrici M, Kenai S, Said-Mansour M. Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cem. Concr. Compos. 2007;29:542–549.10.1016/j.cemconcomp.2007.04.009
  • Usman J, Sam ARM, Sumadi SR, et al. Strength development and porosity of blended cement mortar: effect of palm oil fuel ash content. Sustain. Environ. Res. 2015;25:47–52.
  • Senhadji Y, Escadeillas G, Mouli M, et al. Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technol. 2014;254:314–323.10.1016/j.powtec.2014.01.046
  • Durning TG, Hicks MC. Using microsilica to increase concrete’s resistance to aggressive chemicals. Concr. Int. 1991;13:42–48.
  • Jariyathitipong P, Hosotani K, Fujii T, et al. The sulfuric acid resistance of concrete with blast furnace slag. Proceedings of the First International Conference on Concrete Sustainability, Tokyo, Japan; 2013.
  • Bassuoni MT, Nehdi ML. Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cem. Concr. Res. 2007;37:1070–1084.10.1016/j.cemconres.2007.04.014
  • Aydın S, Yazıcı H, Yiğiter H, et al. Sulfuric acid resistance of high-volume fly ash concrete. Build. Environ. 2007;42:717–721.10.1016/j.buildenv.2005.10.024
  • Torii K, Kawamura M. Effects of fly ash and silica fume on the resistance of mortar to sulfuric acid and sulfate attack. Cem. Concr. Res. 1994;24:361–370.10.1016/0008-8846(94)90063-9
  • Gruyaert E, Van den Heede P, Maes M, et al. Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests. Cem. Concr. Res. 2012;42:173–185.10.1016/j.cemconres.2011.09.009
  • Bassuoni MT, Nehdi ML. Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cem. Concr. Res. 2007;37:1070–1084.10.1016/j.cemconres.2007.04.014
  • Pipilikaki P, Katsioti M, Gallias JL. Performance of limestone cement mortars in a high sulfates environment. Constr. Build. Mater. 2009;23:1042–1049.10.1016/j.conbuildmat.2008.05.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.