262
Views
3
CrossRef citations to date
0
Altmetric
Articles

Modelling of particle resuspension by a turbulent airflow and the role of particle size, surface roughness and electric charge

, , &
Pages 817-843 | Received 03 Feb 2016, Accepted 01 Sep 2016, Published online: 14 Sep 2016

References

  • Henry C, Minier J-P. Progress in particle resuspension from rough surfaces by turbulent flows. Prog. Energy Combust. Sci. 2014;45:1–53.10.1016/j.pecs.2014.06.001
  • Ziskind G. Particle resuspension from surfaces: revisited and re-evaluated. Rev. Chem. Eng. 2006;22:1–123.10.1515/REVCE.2006.22.1-2.1
  • Israelachvili J. Intermolecular and surface forces. London: Academic Press; 1992.
  • Walton OR. Review of adhesion fundamentals for micron-scale particles. Kona Powder Part. J. 2008;26:129–141.
  • Reeks MW, Reed J, Hall D. On the resuspension of small particles by a turbulent flow. J. Phys. D: Appl. Phys. 1988;21:574–589.10.1088/0022-3727/21/4/006
  • Soltani M, Ahmadi G. Particle detachment from rough surfaces in turbulent flows. J. Adhes. 1995;51:105–123.
  • Ziskind G, Fichman M, Gutfinger C. Resuspension of particulates from surfaces to turbulent flows-review and analysis. J. Aerosol Sci. 1995;26:613–644.10.1016/0021-8502(94)00139-P
  • Vainshtein P, Ziskind G, Fichman M, et al. Kinetic model of particle resuspension by drag force. Phys. Rev. Lett. 1997;78:551–554.10.1103/PhysRevLett.78.551
  • Ziskind G, Fichman M, Gutfinger C. Adhesion moment model for estimating particle detachment from a surface. J. Aerosol Sci. 1997;28:623–634.10.1016/S0021-8502(96)00460-0
  • Reeks MD, Hall D. Kinetic models for particle resuspension in turbulent flows: theory and measurement. J. Aerosol Sci. 2001;32:1–31.10.1016/S0021-8502(00)00063-X
  • Biasi L, de los Reyes A, Reeks MW, et al. Use of a simple model for the interpretation of experimental data on particle resuspension in turbulent flows. J. Aerosol Sci. 2001;32:1175–1200.
  • Wang H-C. Effects of inceptive motion on particle detachment from surfaces. Aerosol Sci. Technol. 1990;13:386–393.10.1080/02786829008959453
  • Ibrahim AH, Dunn PF, Brach RM. Microparticle detachment from surfaces exposed to turbulent air flow: controlled experiments and modelling. J. Aerosol Sci. 2003;34:765–782.10.1016/S0021-8502(03)00031-4
  • Guingo M, Minier J-P. A new model for the simulation of particle resuspension by turbulent flows based on a stochastic description of wall roughness and adhesion forces. J. Aerosol Sci. 2008;39:957–973.10.1016/j.jaerosci.2008.06.007
  • Goldasteh I, Ahmandi G, Ferro AR. Monte Carlo simulation of micron size spherical particle removal and resuspension from substrate under fluid flows. J. Aerosol Sci. 2013;66:62–71.10.1016/j.jaerosci.2013.07.012
  • Benito JG, Valenzuela Aracena KA, Uñac RO, et al. Monte Carlo modelling of particle resuspension on a flat surface. J. Aerosol Sci. 2015;79:126–139.10.1016/j.jaerosci.2014.10.006
  • Lazaridis M, Drossinos Y, Georgopoulos PG. Turbulent resuspension of small nonderfomable particles. J. Colloid Interface Sci. 1998;204:24–32.10.1006/jcis.1998.5521
  • Lazaridis M, Drossinos Y. Multilayer resuspension of small identical particles by turbulent flow. Aerosol Sci. Technol. 1998;28:548–560.10.1080/02786829808965545
  • Johnson KL, Kendall K, Roberts AD. Surface energy and the contact of elastic solids. Proc. R Soc. A Lond. A Mat. 1971;324:301–313.10.1098/rspa.1971.0141
  • Derjaguin BW, Muller VM, Toporov YuP. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 1975;53:314–326.10.1016/0021-9797(75)90018-1
  • Tsai C-J, Pui DYH, Liu BYH. Elastic flattening and particle adhesion. Aerosol Sci. Technol. 1991;15:239–255.10.1080/02786829108959531
  • Tabor D. Surface forces and surface interactions. J. Colloid Interface Sci. 1977;58:2–13.10.1016/0021-9797(77)90366-6
  • Johnson KL, Greenwood JA. An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 1997;192:326–333.10.1006/jcis.1997.4984
  • Zhang F, Reeks M, Kissane M. Particle resuspension in turbulent boundary layers and the influence of non-Gaussian removal forces. J. Aerosol Sci. 2003;58:103–128.
  • Götzinger M, Peukert W. Particle adhesion force distributions on rough surfaces. Langmuir. 2004;20:5298–5303.10.1021/la049914f
  • Prokopovich P, Perni S. Multiasperity contact adhesion model for universal asperity height and radius curvature distributions. Langmuir. 2010;26:17028–17036.10.1021/la102208y
  • Audry MC, Ramos S, Charlaix E. Adhesion between highly rouhg alumina surfaces: an atomic force microscope study. J. Colloid Interface Sci. 2009;331:317–378.
  • Prokopovich P, Starov V. Adhesion models: from single to multiple asperity contacts. Adv. Colloid Interface Sci. 2011;168:210–222.10.1016/j.cis.2011.03.004
  • Feuillebois F, Gensdarmes F, Mana Z, et al. Three dimensional motion of particles in a shear flow near a rough wall. J. Aerosol Sci. 2016;96:69–95.10.1016/j.jaerosci.2015.10.004
  • O’Neil ME. A sphere in contact with a plane wall in a slow linear shear flow. Chem. Eng. Sci. 1968;23:1293–1298.10.1016/0009-2509(68)89039-6
  • Leighton D, Acrivos A. The lift on a small sphere touching a plane in the presence of a simple shear flow. J. Appl. Math. Phys. 1985;36:174–178.10.1007/BF00949042
  • Martinez RC, Sweeney LG, Finlay WH. Aerodynamic forces and moment on a sphere or cylinder attached to a wall in Blasius boundary layer. Eng. Appl. Comp. Fluid. 2009;3:289–295.
  • Hinds WC. Aerosol technology. New York (NY): Wiley; 1999.
  • Poling BE, Prausnitz JM, O’Connell JP. The properties of gases and liquids. New York (NY): McGraw-Hill; 2001.
  • Chung T-H, Lee LL, Starling KE. Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity. Ind. Eng. Chem. Fundam. 1984;23:8–13.10.1021/i100013a002
  • Aniya M. Estimation of critical constants from boiling temperature and atomic parameters. Phys. B. 1997;239:144–150.10.1016/S0921-4526(97)00398-0
  • Feng JQ, Hays DA. Relative importance of electrostatic forces on powder particles. Powder Technol. 2003;135–136:65–75.10.1016/j.powtec.2003.08.005
  • Zhou H, Götzinger M, Peukert W. The influence of particle charge and roughness on particle-surface substrate adhesion. Powder Technol. 2003;135–136:82–91.10.1016/j.powtec.2003.08.007
  • Czarnecki WS, Schein LB. Electrostatic force acting on a spherically symmetric charge distribution in contact with a conductive plane. J. Electrostat. 2004;61:107–115.10.1016/j.elstat.2004.01.022
  • Henry C, Minier J-P, Lefevre G. Numerical study on the adhesion and reentrainment of nondeformable particles on surfaces: the role of surface roughness and electrostatic forces. Langmuir. 2012;28:438–452.10.1021/la203659q
  • Jiang Y, Matsusaka S, Masuda H, et al. Characterizing the effect of substrate surface roughness on particle-wall interaction with the airflow method. Powder Technol. 2008;186:199–205.10.1016/j.powtec.2007.11.041
  • Takeuchi M. Adhesion forces of charged particles. Chem. Eng. Sci. 2006;61:2279–2289.10.1016/j.ces.2004.06.051

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.