290
Views
8
CrossRef citations to date
0
Altmetric
Articles

Preparation of a high hydrophobic aluminium surface by double zincating process

, , , , &
Pages 1061-1074 | Received 29 Mar 2016, Accepted 29 Sep 2016, Published online: 14 Oct 2016

References

  • Simmons RB, Rose LJ, Crow SA, et al. The occurrence and persistence of mixed biofilms in automobile air conditioning systems. Curr. Microbiol. 1999;39:141–145.10.1007/s002849900435
  • Rose LJ, Simmons RB, Crow SA, et al. Volatile organic compounds associated with microbial growth in automobile air conditioning systems. Curr. Microbiol. 2000;41:206–209.10.1007/s002840010120
  • Natishana PM, O’Grady WE. Chloride ion interactions with oxide-covered aluminium leading to pitting corrosion: a review. J. Electrochem. Soc. 2014;161:C421–C432.10.1149/2.1011409jes
  • Yabe M. Pretreatment for difficult to-plate metals. J. Surf. Fin. Soc. Jpn. 1997;48:522–529.
  • Hafiz MH, Mahdi BS. Surface preparation of aluminum for plating by zincating. Eng. Technol. 2007;25:1184–1193.
  • Keller F, Zelley WG. Conditioning aluminum alloys for electroplating. J. Electrochem. Soc. 1950;97:143–151.10.1149/1.2777981
  • Murakami K, Hino M, Hiramatsu M, et al. Effect of zincate treatment on adhesion of electroless nickel–phosphorus coating for commercial pure aluminum. Mater. Trans. 2006;47:2518–2523.10.2320/matertrans.47.2518
  • Huang Y, Sarkar DK, Chen XG. Fabrication of superhydrophobic surfaces on aluminum alloy via electrodeposition of copper followed by electrochemical modification. Nano-Micro. Lett. 2011;3:160–165.10.1007/BF03353667
  • Sarkar DK, Farzaneh M, Paynter RW. Superhydrophobic properties of ultrathin rf-sputtered Teflon films coated etched aluminum surfaces. Mater. Lett. 2008;62:1226–1229.10.1016/j.matlet.2007.08.051
  • Sarkar DK, Farzaneh M, Paynter RW. Wetting and superhydrophobic properties of PECVD grown hydrocarbon and fluorinated-hydrocarbon coatings. Appl. Surf. Sci. 2010;256:3698–3701. 10.1016/j.apsusc.2009.12.049.
  • Saleema N, Sarkar DK, Paynter RW, et al. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications. Appl. Surf. Sci. 2012;261:742–748.10.1016/j.apsusc.2012.08.091
  • Liang J, Hu Y, Wu Y, et al. Fabrication and corrosion resistance of superhydrophobic hydroxide zinc carbonate film on aluminum substrates. J. Nanomater. 2013;139768:1–6.
  • He T, Wang Y, Zhang Y, et al. Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater. Corros. Sci. 2009;51:1757–1761.10.1016/j.corsci.2009.04.027
  • Saleema N, Sarkar DK, Gallant D, et al. Chemical nature of superhydrophobic aluminum alloy surfaces produced via a one-step process using fluoroalkyl-silane in a base medium. ACS. Appl. Mater. Interfaces. 2011;3:4775–4781.10.1021/am201277x
  • Lafuma A, Quere D. Superhydrophobic states. Nat. Mater. 2003;2:457–460.10.1038/nmat924
  • Ma M, Hill RM. Superhydrophobic surfaces. Curr. Opin. Colloid. Interface. Sci. 2006;11:193–202.10.1016/j.cocis.2006.06.002
  • Simon J, Zakel E, Reichl H. Electroless deposition of bumps for TAB technology. Electr. Comp. Technol. Conf. 1990;1:412–417.10.1109/ECTC.1990.122223
  • Azumi K, Yugiri T, Seo M, et al. Double zincate pretreatment of sputter-deposited Al films. J. Electrochem. Soc. 2001;148:C433–C438.10.1149/1.1370966
  • Liu Y, He L, Mustapha A, et al. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol. 2009;107:1193–1201.10.1111/j.1365-2672.2009.04303.x
  • Xie Y, He Y, Irwin PL, et al. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Appl. Environ. Microbiol. 2011;77:2325–2331.10.1128/AEM.02149-10
  • He L, Liu Y, Mustapha A, et al. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011;166:207–215.10.1016/j.micres.2010.03.003
  • Hino M, Murakami K, Hiramatsu M, et al. Effect of zincate treatment on adhesion of electroless Ni–P plated film for 2017 aluminum alloy. Mater. Trans. 2005;46:2169–2175.10.2320/matertrans.46.2169
  • Hosono E, Fujihara S, Honma I, et al. Superhydrophobic perpendicular nanopin film by the bottom-up process. J. Am. Chem Soc. 2005;127:13458–13459.10.1021/ja053745j
  • Xie D, Li W. A novel simple approach to preparation of superhydrophobic surfaces of aluminum alloys. Appl. Surf. Sci. 2011;258:1004–1007.10.1016/j.apsusc.2011.07.104
  • Ruan M, Li W, Wang B, et al. Optimal conditions for the preparation of superhydrophobic surfaces on al substrates using a simple etching approach. Appl. Surf. Sci. 2012;258:7031–7035.10.1016/j.apsusc.2012.03.159
  • Andrew MP, Aijun W, Wilfred C, et al. Hydrophilic and antimicrobial zeolite coatings for gravity independent water separation. Adv. Funct. Mater. 2005;15:336–340.
  • Yining N, Carol K, Xueyuan N, et al. Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface. Ann. Clin. Microbiol. Antimicrob. 2010;9:25. 10.1186/1476-0711-9-25.
  • Feng L, Zhang H, Wang Z, et al. Superhydrophobic aluminum alloy surface: Fabrication, structure, and corrosion resistance. Colloids. Surf. A. 2014;441:319–325.10.1016/j.colsurfa.2013.09.014
  • Pu G, Severtson SJ. Dependency of contact angle hysteresis on crystallinity for n-alkane substrates. J. Phys. Chem. C. 2009;113:6673–6680.10.1021/jp809988k
  • Ghose KS, Hilal MD, Bose S. Corrosion behavior of 2024 Al−Cu−Mg alloy of various tempers. Trans. Nonferrous. Met. Soc. China. 2013;23:3215–3227.10.1016/S1003-6326(13)62856-3
  • Lee HM, Yun JY. Preparation of aluminum-oleic acid nano-composite for application to electrode for Si solar cells. Mater. Trans. 2011;52:1222–1227.10.2320/matertrans.M2010409
  • Paluvai NR, Mohanty S, Nayak SK. Studies on thermal degradation and flame retardant behavior of the sisal fiber reinforced unsaturated polyester toughened epoxy nanocomposites. J. Appl. Polym. Sci. 2015;132:42068. 10.1002/APP.42068.
  • Haghnazari N, Abdollahifar M, Farahnaz F. The effect of NaOH and KOH on the characterization of mesoporous AlOOH nanostructures in the hydrothermal route. J. Mex. Chem. Soc. 2014;58:95–98.
  • Lei X, Ma J. Synthesis and electrochemical performance of aluminum based composites. J. Braz. Chem. Soc. 2010;21:209–213.10.1590/S0103-50532010000200004
  • Huang F, Xie B, Wu B, et al. Enhancing the crystallinity and surface roughness of sputtered TiO2 thin film by ZnO underlayer. Appl. Surf. Sci. 2009;255:6781–6785.10.1016/j.apsusc.2009.02.060
  • Extrand CW. Contact angles and their hysteresis as a measure of liquid–solid adhesion. Langmuir. 2004;20:4017–4021.10.1021/la0354988
  • Lim YJ, Oshida Y, Andres CJ, et al. Surface characterizations of variously treated titanium materials. Int. J. Oral. Max. Impl. 2001;16:333–342.
  • Drelich J, Chibowski E, Meng DD, et al. Hydrophilic and superhydrophilic surfaces and materials. Soft. Matter. 2011;7:9804–9828.10.1039/c1sm05849e
  • Wenzel RN. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936;28:988–994.10.1021/ie50320a024
  • Roach P, Shirtcliffe NJ, Newton MI. Progress in superhydrophobic surface development. Soft. Matter. 2008;4:224–240.
  • Rios PF, Dodiuk H, Kenig S, et al. Transparent ultra-hydrophobic surfaces. J. Adhes. Sci. Technol. 2007;21:399–408.10.1163/156856107780474975
  • Marmur A. The lotus effect: superhydrophobicity and metastability. Langmuir. 2004;20:3517–3519.10.1021/la036369u
  • Gong MG, Xu XL, Yang Z, et al. Superhydrophobic surfaces via controlling the morphology of ZnO micro/nano complex structure. Chin. Phys. B. 2010;19:056701.10.1088/1674-1056/19/5/056701
  • Molina MP, Moreno PG, Fernández-Barbero JE, et al. Role of wettability and nanoroughness on interactions between osteoblast and modified silicon surfaces. Acta. Biomater. 2011;7:771–778.10.1016/j.actbio.2010.08.024
  • Bahrami A, Pech-Canul MI, Gutiérrez CA, et al. Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al–Si–Mg alloys. Appl. Surf. Sci. 2015;357:1104–1113.10.1016/j.apsusc.2015.09.137
  • Paluvai NR, Mohanty S, Nayak SK. Unsaturated polyester-toughened epoxy composites: effect of sisal fiber on thermal and dynamic mechanical properties. J. Vinyl. Addit. Technol. 10.1002/vnl.21491.
  • Feng L, Zhang Y, Xi J, et al. Petal effect: a superhydrophobic state with high adhesive force. Langmuir. 2008;24:4114–4119.10.1021/la703821h
  • Bhushan B, Nosonovsky M. The rose petal effect and the modes of superhydrophobicity. Philos. Trans. R. Soc. A. 2008;368:4713–4728.
  • He B, Lee J, Patankar NA. Contact angle hysteresis on rough hydrophobic surfaces. Colloids. Surf. A. 2004;248:101–104.10.1016/j.colsurfa.2004.09.006
  • Hafeez H, Cho SH, Han DH, et al. Novel one step route to induce long-term lotus leaf-like hydrophobicity in polyester fabric. J. Adhes. Sci. Technol. 2015;29:555–567.10.1080/01694243.2014.998002
  • Balu B, Breedveld V, Hess DW. Fabrication of ‘roll-off’ and ‘sticky’ superhydrophobic cellulose surfaces via plasma processing. Langmuir. 2008;24:4785–4790.10.1021/la703766c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.