296
Views
12
CrossRef citations to date
0
Altmetric
Articles

A generalized Young’s equation to bridge a gap between the experimentally measured and the theoretically calculated line tensions

Pages 2305-2319 | Received 27 Mar 2018, Accepted 07 May 2018, Published online: 03 Jun 2018

References

  • Law BM, McBride SP, Wang JY, et al. Line tension and its influence on droplets and particles at surfaces. Prog Surf Sci. 2017;92:1–39.
  • Gibbs JW. On the equilibrium of heterogeneous substances. Trans Conn Acad. 1878;III:343. In: The scientific papers of J. Willard Gibbs V1: Thermodynamics, p. 288 footnote. London: Longmans and Green;1906.
  • Rowlinson JS, Widom B. Molecular theory of capillarity. Oxford: Oxford University Press; 1982.
  • de Gennes PG, Brochard-Wyart F, Quéré D. Capillarity and wetting phenomena drops, bubbles, pearls, waves. New York (NY): Springer; 2004.
  • Boruvka L, Neumann AW. Generalization of the classical theory of capillary. J Chem Phys. 1977;66:5464–5476.
  • Young T. An essay on the cohesion of fluids. Phil Trans R Soc Lond. 1985;95:65–87.
  • Maheshwari S, van der Hoef M, Lohse D. Line tension and wettability of nanodrops on curved surfaces. Langmuir. 2016;32:316–321.
  • Kanduč M. Going beyond the standard line tension: size-dependent contact angles of water nanodroplets. J Chem Phys. 2017;147:174701-1--8.
  • Drelich J. The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems. Coll Surf A. 1996;116:43–54.
  • Pompe T, Herminghaus S. Three-phase contact line energetics from nanoscale liquid surface topographies. Phys Rev Lett. 2000;85:1930–1933.
  • Wang JY, Betelu S, Law BM. Line tension approaching a first-order wetting transition: experimental results from contact angle measurement. Phys Rev E. 2001;63:031601-1--11.
  • Checco A, Guenoun P, Daillant J. Nonlinear dependence of the contact angle of nanodroplets on contact line curvature. Phys Rev Lett. 2003;91:186101-1--4.
  • Kameda N, Nakabayashi S. Size-induced sign inversion of line tension in nanobubbles at solid/liquid interface. Chem Phys Lett. 2008;461:122–126.
  • Berg JK, Weber CM, Riegler H. Impact of negative line tension on the shape of nanometer-size sessile droplets. Phys Rev Lett. 2010;105:076103-1--4.
  • David R, Neumann AW. Empirical equation to account for the length dependence of line tension. Langmuir. 2007;23:11999–12002.
  • Heim L-O, Bonaccurso E. Measurement of line tension on droplet in the submicrometer range. Langmuir. 2013;29:14147–14153.
  • Weijs JH, Marchand A, Andreotti B, et al. Origin of line tension for a Lennard-Jones nanodroplet. Phys Fluid. 2011;23:022001-1--11.
  • Liu Y, Wang J, Zhang X. Accurate determination of the vapor-liquid-solid line tension and the viability of Young equation. Sci Rep. 2013;3:2008-1--6.
  • Iwamatsu M. Line-tension-induced scenario of heterogeneous nucleation on a spherical substrate and in a spherical cavity. J Chem Phys. 2015;143:014701-1--12.
  • Navascués G, Tarazona P. Line tension effects in heterogeneous nucleation theory. J Chem Phys. 1981;75:2441–2446.
  • Widom B. Line tension and the shape of a sessile drop. J Phys Chem. 1995;99:2803–2806.
  • Schimmele L, Napiórkowski M, Dietrich S. Conceptual aspects of line tensions. J Chem Phys. 2007;127:164715-1--28.
  • Schimmele L, Dietrich S. Line tension and the shape of nanodroplets. Euro Phys J E. 2009;30:427–430.
  • Kondo S. A statistical-mechanical theory of surface tension of curved surface layer I. J Phys Soc Jpn. 1955;10:381–386.
  • Rusanov AI, Shchekin AK, Tatyanenko DV. The line tension and the generalized Young equation: the choice of dividing surface. Coll Surf A. 2004;250:263–268.
  • Wang X-S, Cui S-W, Zhou L, et al. A generalized Young’s equation for contact angles of droplets on homogeneous and rough substrates. J Adh Sci Tech. 2014;28:161–170.
  • Indekeu JO. Line tension near the wetting transition: results from an interface displacement model. Physica A. 1992;183:439–461.
  • Getta T, Dietrich S. Line tension between fluid phases and a substrate. Phys Rev E. 1998;57:655–671.
  • Pompe T. Line tension behavior of a first-order wetting system. Phys Rev Lett. 2002;89:076102-1--4.
  • Herminghaus S, Brochard F. Dewetting through nucleation. C R Phys. 2006;7:1073–1081.
  • Matsubara H, Otsuka J, Law BM. Finite-size and solvent dependent line tension effects for nanoparticles at the air-liquid surface. Langmuir. 2018;34:331–340.
  • Chen L, Yu J, Wang H. Convex nanobending at a moving contact line: the missing mesoscopic link in dynamic wetting. ACS Nano. 2014;8:11493–11498.
  • Tolman RC. The effect of droplet size on surface tension. J Chem Phys. 1949;17:333–337.
  • Iwamatsu M. The surface tension and Tolman’s length of a drop. J Phys Condense Matter. 1994;6:L173–L177.
  • van Giessen AE, Blockhuis EM, Bukman DJ. Mean field curvature corrections to the surface tension. J Chem Phys. 1998;108:1148–1156.
  • Iwamatsu M. Spreading law on a completely wettable spherical substrate: the energy balance approach. Phys Rev E. 2017;95:052802-1--6.
  • MacDowell LG, Benet J, Katcho NA. Capillary fluctuations and film-height-dependent surface tension of an adsorbed liquid film. Phys Rev Lett. 2013;111:047802-1--5.
  • Shapiro S, Moon H, Garrell RL, et al. Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations. J Appl Phys. 2003;93:5794–5811.
  • Marmur A. Line tension and the intrinsic contact angle in solid-liquid-fluid systems. J Colloid Interface Sci. 1997;186:462–466.
  • Block BJ, Das SK, Oettel M, et al. Curvature dependence of surface free energy of liquid drops and bubbles: a simulation study. J Chem Phys. 2010;133:154702-1--12.
  • Khalkhali M, Kazemi N, Zhang H, et al. Wetting at nanoscale: a molecular dynamics study. J Chem Phys. 2017;146:114704-1--12.
  • Bruot N, Caupin F. Curvature dependence of the liquid-vapor surface tension beyond the Tolman approximation. Phys Rev Lett. 2016;116:056102-1--5.
  • Israelachivili JN. Intermolecular and surface forces. 3rd ed. Amsterdam: Elsevier; 2011.
  • Andrieu C, Sykes C, Brochard F. Average spreading parameter on heterogeneous surfaces. Langmuir. 1994;10:2077–2080.
  • Drelich J, Miller JD, Hupka J. The effect of drop size on contact angle over a wide range of drop volumes. J Colloid Interface Sci. 1993;155:379–385.
  • Hänig S, Müller A, Neumann AW. Measurements of line tension for solid-liquid-vapor systems using drop size dependence of contact angle and its correlation with solid-liquid interfacial tension. Langmuir. 2000;16:2024–2031.
  • Tadmor R, Yadav SB, Gulec S, et al. Why drops bounce on smooth surfaces. Langmuir. 2018;34:4695–4700.
  • Tatyanenko DV, Shchekin AK. Comparable effects of adsorption and line tension on contact angle of a nucleated droplet on a partially wettable substrate. Interface Phenom Heat Transf. 2017;5:113–128.
  • Bormashenko E. General equation describing wetting of rough surfaces. J Colloid Interface Sci. 2011;360:317–319.
  • Włoch J, Terzyk AP, Wiśniewki M, et al. Nanoscale water contact angle on polytetrafluoroethylene surfaces characterized by molecular dynamics-atomic force microscopy imaging. Langmuir. 2018;34:4526–4534.
  • Gundersen H, Leinaas HP, Thaulow C. Collembola cuticles and the three-phase line tension. Beilstein J Nanotechnol. 2017;8:1714–1722.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.