141
Views
4
CrossRef citations to date
0
Altmetric
Articles

Effect of thermal damage on mechanical behavior and transport properties of self-compacting concrete incorporating polypropylene fibers

, , &
Pages 2535-2566 | Received 20 Jan 2019, Accepted 23 Jul 2019, Published online: 11 Sep 2019

References

  • Khayat K. Workability, testing, and performance of self-consolidating concrete. ACI Mater J. 1999;96:346–353.
  • Niknezhad D, Kamali-Bernard S, Mesbah HA. Self-compacting concretes with supplementary cementitious materials: Shrinkage and cracking tendency. J Mater Civ Eng. 2017;29:04017033. doi:10.1061/(ASCE)MT.1943-5533.0001852
  • Ghezal A, Khayat KH. Optimizing self-consolidating concrete with limestone filler by using statistical factorial design methods. ACI Mater J. 2002;99:264–272.
  • Bosiljkov VB. SCC mixes with poorly graded aggregate and high volume of limestone filler. Cem Concr Res. 2003;33:1279–1286.
  • Nehdi M, Mindess S, AïTcin P-C. Rheology of highperformance concrete: Effect of ultrafine particles. Cem Concr Res. 1998;28:687–697.
  • Niknezhad D, Kamali-Bernard S, Garand C. Influence of mineral admixtures (Metakaolin, slag, fly ash) on plastic, free and restrained shrinkage of SCCs, CONCREEP 10: Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures At: Vienna, (Austria); 2015. doi:10.1061/9780784479346.138.
  • Raghavan B, Niknezhad D, Bernard F, et al. Combined meso-scale modeling and experimental investigation of the effect of mechanical damage on the transport properties of cementitious composites. J Phys Chem Solids. 2016;96:22–37.
  • Zhu W, Bartos P. Permeation properties of self-compacting concrete. Cem Concr Res. 2003;33:921–926.
  • Figueiras H, Nunes S, Sousa J, et al. Combined effect of two sustainable technologies: self-compacting concrete and controlled permeability formwork. Constr Build Mater. 2009;23:2518–2526.
  • Briffaut M, Benboudjema F, D’Aloia L. Effect of fibres on early age cracking of concrete tunnel lining. Part I: Laboratory ring test. Université Grenoble Alpes, France. Tunn Undergr Space Technol. 2016;59:215–220.
  • Briffaut M, Benboudjema F, D’Aloia L. Effect of fibres on early age cracking of concrete tunnel lining. Part II: Numerical simulations. Université Grenoble Alpes, France. Tunn Undergr Space Technol. 2016;59:221–229.
  • Cao Q, Cheng Y, Cao M, et al. Workability, strength and shrinkage of fiber reinforced expansive self-consolidating concrete, University of Technology. Constr Build Mater. 2017;131:178–185.
  • Figueiredo AD, Tanesi J. A Nince, Concreto com fibras de polipropileno. Téchne São Paulo. 2002;10:48–51.
  • Ozawa M, Sakoi Y, Fujimoto K, et al. Estimation of chloride diffusion coefficients of high-strength concrete with synthetic fibres after fire exposure. Constr Build Mater. 2017;143:322–329.
  • Kalifa F, Menneteau D, Quenard D. Spalling and pore pressure in HPC at high temperatures. Cem Concr Res. 2000;30:1915–1927.
  • Ulm FJ, Acker P, Lévy M. The Chunnel Fire II: analysis of concrete damage. J Eng Mech. 1999;125:283–289.
  • Phan LT. Pore pressure and explosive spalling in concrete. Mater Struct. 2008;41:1623–1632.
  • Anderberg Y, Spalling phenomena in HPC and OC In L. T. phan, NJ. Carino, D. Duthinh, E. Garboczi (Eds.), Proceedings of the International Workshop on Fire Performance of High-Strength Concrete, Gaithers- Burg, Maryland; 1997. 69–73. Nist.
  • Pliya P, Beaucour AL, Noumowé A. Contribution of cocktail of polypropylene and steel fibres in improving the behavior of high strength concrete subjected to high temperature. Constr Build Mater. 2011;25:1926–1934.
  • Uysal M, Tanyildizi H. Estimation of compressive strength of self-compacting concrete containing polypropylene fiber and mineral assitives exposed to high temperature using artificial neural network. Constr Build Mater. 2012;27:404–414.
  • Noumowé AN, Clastres P, Debick G, et al. Transient heating effect on high strength concrete. Nucl Eng Des. 1996;166:99–108.
  • Fallah S, Nematzadeh M. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica. Constr Build Mater. 2017;132:170–187.
  • Gao D, Yan D, Li X. Splitting strength of GGBFS concrete incorporating with steel fiber and polypropylene fiber after exposure to elevated temperatures. Fire Saf J. 2012;54:67–73.
  • Zhang P, Li QF. Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Compos Eng: Part B. 2013;45:1587–1594.
  • Nili M, Afroughsabet V. The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Constr Build Mater. 2010;24:927–933.
  • Fathi H, Lameie T, Maleki M, et al. Simultaneous effects of fiber and glass on the mechanical properties of self-compacting concrete. Constr Build Mater. 2017;133:443–449.
  • Simões T, Costa H, Dias-da-Costa D, et al. Influence of fibres on the mechanical behaviour of fibre reinforced concrete matrixes. Constr Build Mater. 2017;137:548–556.
  • Sadiqul Islam GM, Das Gupta S. Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete. Int J Sust Built Environm. 2016;5:345–354.
  • Yermak N, Pliya P, Beaucour AL, et al. Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: spalling, transfer and mechanical. Constr Build Mater. 2017;132:240–250.
  • Flores Medina N, Barluenga G, Hernández-Olivares F. Combined effect of polypropylene fibers and silica fume to improve the durability of concrete with natural pozzolans blended cement. Constr Build Mater. 2015;96:556–566.
  • Flores Medina N, Barluenga G, Hernández-Olivares F. Enhancement of durability of concrete composites containing natural pozzolans blended cement through the use of Polypropylene fibers. Compos Eng: Part B. 2014;61:214–221.
  • Diederichs U, Jumppanen UM, Penttala V. Material properties of high strength concrete at elevated temperature, 13st IABSE congress report, Helsinki (Finland), 1988.
  • Diederichs U, Jumppanen UM, Penttala V. Behaviour of high temperatures, Espoo 1989, Helsinki University of technology, Department of Structural Engineering, Report 92; 1992. p. 723.
  • Mounajed G, Menou A, Boussa H, et al. Comportement au feu des bétons. Approche multi-échelles de l’endommagement thermique et identification expérimentale des paramètres ». Revue française de génie civil, Hermès. 2003;7:1299–1323.
  • Menou A. Etude du comportement thermomécanique des bétons à haute température. Approche multi-échelles de l’endommagement thermique, Thèse de doctorat de l’Université de Pau et des Pays de l’Adour; 2004.
  • Benhood A, Ghandehari M. Comparison of compressive and splitting tensile strength of high–strength concrete with and without polypropylene fibers heated to high temperatures. Fire Saf J. 2009;44:1015–1022.
  • Mindeguia JC, Pimienta P, Noumowé A, et al. Temperature, pore pressure and mass variation of concrete subjected to high temperature - Experimental and numerical discussion on spalling risk. Cem Concr Res. 2010;40:477–487.
  • Baroghel-Bouny V. Concrete design for structures with predefined service life – durability control with respect to reinforcement corrosion and alkali–silica reaction state-of-the-art and guide for the implementation of a performance-type and predictive approach based upon durability indicators, English version of Documents Scientifiques et Techniques de l’AFGC (Civil Engineering French Association; 2004.
  • Torrent RJ. A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site. Mater Struct. 1992;25:358–365.
  • Leklou N, Nguyen VH, Mounanga P. The effect of the partial cement substitution with fly ash on Delayed Ettringite Formation in heat-cured mortars. KSCE J Civ Eng. 2017;21:1359–1366.
  • Bouharoun S, Leklou N, Mounanga P. Use of asbestos-free fiber-cement waste as a partial substitute of Portland cement in mortar. Mater Struct. 2015;48:1679–1687.
  • Nguyen VH, Leklou N, Aubert JE, et al. The effect of natural pozzolan on delayed ettringite formation of the heat-cured mortars. Constr Build Mater. 2013;48:479–484.
  • Kollek JJ. The determination of the permeability of cementitious composites to oxygen by the Cembureau method a recommendation. Mater Struct. 1989;22:225–230.
  • Carman PC. Flow of gases through porous media. London (UK): Butterworths; 1956.
  • Berryman JG, Blair SC. Kozeny-Carman relations and image processing methods for estimating Darcy's constant. J Appl Phys. 1987;62:2221–2228.
  • Klinkenberg LJ. The permeability of porous media to liquid and gaz. Washington (DC): American Petroleum Institute, Drilling and Production Practice; 1941, 200–213.
  • Picandet V, Khelidj A, Bastian G. Effect of axial compressive damage on gas permeability of ordinary and high performance concrete. Cem Concr Res. 2001;31:1525–1532.
  • Villain G, Baroghel Bouny V, Kounkou C, et al. Mesure de la perméabilité aux gaz en fonction du taux de saturation des bétons. Revue française de génie civil. 2001;5:251–269.
  • Bonnet S, Balayssac JP. Combination of the Wenner resistivimeter and Torrent permeameter methods for assessing carbonation depth and saturation level of concrete. Constr Build Mater. 2018;188:1149–1165.
  • Ben Fraj A, Bonnet S, Khelidj A. New approach for coupled chloride/moisture transport in non-saturated concrete with and without slag. Constr Build Mater. 2012;35:761–771.
  • Andrade C. Calculation of chlorid diffusion coefficient in concrete from ionique diffusion measurements. Cem Concr Res. 1993;23:724–742.
  • Andrade C, Alonso C. On-site measurements of corrosion rate of reinforcements. Constr Build Mater. 2001;15:141–145.
  • Novak J, Kohoutkova A. Mechanical properties of concrete composites subject to elevated temperature. Fire Saf J. 2018;95:66–76.
  • Lee J, Terada K, Yamazaki M, et al. Impact of melting and burnout of polypropylene fibre on air permeability and mechanical properties of high-strength concrete. Fire Saf J. 2017;91:553–560.
  • Choinska M, Khelidj A, Chatzigeorgiou G, et al. Effects and interactions of temperature and stress-level related damage on permeability of cementitious composites. Cem Concr Res. 2007;37:79–88.
  • Djerbi Tegguer A, Bonnet S, Khelidj A, et al. Effect of uniaxial compressive loading on gas permeability and chloride diffusion coefficient of concrete and their relationship. Cem Concr Res. 2013;52:131–139.
  • Kermani A. Permeability of stressed cementitious composites. Build Res Inf. 1991;19:362–365.
  • Lemaitre J, Dufailly J. Dufailly, Damage measurements. Eng. Fract Mech. 1987;28:643–661.
  • Zhou C, Li K, Han J. Characterizing the effect of compressive damage on transport properties of cracked cementitious composites. Mater Struct. 2012;45:381–392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.