1,682
Views
76
CrossRef citations to date
0
Altmetric
Review

The need for standards in low ice adhesion surface research: a critical review

ORCID Icon, &
Pages 319-347 | Received 21 Jun 2019, Accepted 09 Sep 2019, Published online: 23 Oct 2019

References

  • Makkonen L. Ice adhesion—theory, measurements and countermeasures. J Adhes Sci Technol. 2012;26(4–5):413–445.
  • Mittal K. Editorial note. J Adhes Sci Technol. 2012;26(4–5):405–406.
  • Kreder MJ, Alvarenga J, Kim P, et al. Design of anti-icing surfaces: smooth, textured or slippery? Nat Rev Mater. 2016;1(1):1–15.
  • Lv J, Song Y, Jiang L, et al. Bio-inspired strategies for anti-icing. ACS Nano. 2014;8(4):3152–3169.
  • Brassard J, Laforte C, Guerin F, et al. Icephobicity: definition and measurement regarding atmospheric icing. Berlin, Heidelberg: Springer; 2017.
  • Hejazi V, Sobolev K, Nosonovsky M. From superhydrophobicity to icephobicity: forces and interaction analysis. Sci Rep. 2013;3(1):2194.
  • Sojoudi H, Wang M, Boscher ND, et al. Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces. Soft Matter. 2016;12(7):1938–1963.
  • He Z, Xiao S, Gao H, et al. Multiscale crack initiators promoted super-low ice adhesion surfaces. Soft Matter. 2017;13(37):6562–6568.
  • Varanasi KK, Deng T, Smith JD, et al. Frost formation and ice adhesion on superhydrophobic surfaces. Appl Phys Lett. 2010;97(23):234102–234103.
  • Dotan A, Dodiuk H, Laforte C, et al. The relationship between water wetting and ice adhesion. J Adhes Sci Technol. 2009;23(15):1907–1915.
  • Chen J, Liu J, He M, et al. Superhydrophobic surfaces cannot reduce ice adhesion. Appl Phys Lett. 2012;101(11):111603.
  • Wang F, Ding W, He J, et al. Phase transition enabled durable anti-icing surfaces and its diy design. Chem Eng J. 2019;360:243–249.
  • He Z, Vågenes ET, Delabahan C, et al. Room temperature characteristics of polymer-based low ice adhesion surfaces. Sci Rep. 2017;7(1):42181.
  • Beemer DL, Wang W, Kota AK. Durable gels with ultra-low adhesion to ice. J Mater Chem A. 2016;4(47):18253.
  • Work A, Lian Y. A critical review of the measurement of ice adhesion to solid substrates. Prog Aerospace Sci. 2018;98:1–26.
  • International Organization for Standardization. ISO 4624:2016 paints and varnishes – pull-off test for adhesion; 2016 [cited 2018 Oct 16]. Available from: https://www.iso.org/standard/62351.html
  • ASTM International. Designation: D3359—17 standard test methods for rating adhesion by tape test; 2017 [cited 2018 Oct 16]. Available from: https://compass.astm.org/EDIT/html_annot.cgi?D3359+17.
  • ASTM International. Adhesive standards; 2018 [cited 2018 Oct 16]. Available from: https://www.astm.org/Standards/adhesive-standards.html.
  • Meuler AJ, Smith JD, Varanasi KK, et al. Relationships between water wettability and ice adhesion. ACS Appl Mater Interfaces. 2010;2(11):3100–3110.
  • Bartels-Rausch T, Bergeron V, Cartwright JHE, et al. Ice structures, patterns, and processes: a view across the ice-fields. Rev Mod Phys. 2012;84(2):885–944.
  • Golovin K, Kobaku SPR, Lee DH, et al. Designing durable icephobic surfaces. Sci Adv. 2016;2(3):e1501496–12.
  • Sayward JM. Seeking low ice adhesion report. U.S.: Army Cold Regions Research and Engineering Laboratory 1979.
  • Kasaai MR, Farzaneh M. A Critical review of evaluation methods of ice adhesion. 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, British Columbia, Canada, Vol. 3, 2004. p. 919–926.
  • Schulz M, Sinapius M. Evaluation of different ice adhesion tests for mechanical deicing systems. SAE 2015 International Conference on icing of aircraft, engines, and structures, Prague, Czech Republic; 2015.
  • Petrenko VF. Study of the physical mechanisms of ice adhesion. NH: Thayer School of Engineering Hanover; 2003.
  • Anderson DN, Reich AD. Tests of the performance of coatings for low ice adhesion. Tech Memorandum. 1997;107399:14.
  • Farzaneh M, Gauthier H, Castellana G, et al. Tb 631 coatings for protecting overhead power network equipment in winter conditions. Report, CIGRE, Paris, France; 2015.
  • Laforte C, Beisswenger A. Icephobic material centrifuge adhesion test. 11th International Workshop on Atmospheric Icing on Structures (IWAIS), Montréal, Canada; 2005. p. 1–5.
  • Wang C, Zhang W, Siva A, et al. Laboratory test for ice adhesion strength using commercial instrumentation. Langmuir. 2014;30(2):540–547.
  • Cohen N, Dotan A, Dodiuk H, et al. Thermomechanical mechanisms of reducing ice adhesion on superhydrophobic surfaces. Langmuir. 2016;32(37):9664–9675.
  • Irajizad P, Al-Bayati A, Eslami B, et al. Stress-localized durable icephobic surfaces. Mater Horiz. 2019;6(4):758.
  • Dou R, Chen J, Zhang Y, et al. Anti-icing coating with an aqueous lubricating layer. ACS Appl Mater Interfaces. 2014;6(10):6998–7003.
  • Raraty LE, Tabor D. The adhesion and strength properties of ice. Proc R Soc A: Math Phys Eng Sci. 1958;245:184–201.
  • Upadhyay V, Galhenage T, Battocchi D, et al. Amphiphilic icephobic coatings. Prog Org Coat. 2017;112:191–199.
  • Golovin K, Dhyani A, Thouless MD, et al. Low-interfacial toughness materials for effective large-scale deicing. Science. 2019;364(6438):371.
  • Mitridis E, Schutzius TM, Sicher A, et al. Metasurfaces leveraging solar energy for icephobicity. ACS Nano. 2018;12(7):7009–7017.
  • Pan S, Guo R, Björnmalm M, et al. Coatings super-repellent to ultralow surface tension liquids. Nat Mater. 2018;17(11):1040–1047.
  • He Z, Zhuo Y, He J, et al. Design and preparation of sandwich-like polydimethylsiloxane (pdms) sponges with super-low ice adhesion. Soft Matter. 2018;14(23):4846–4851.
  • Zhuo Y, Håkonsen V, He Z, et al. Enhancing the mechanical durability of icephobic surfaces by introducing autonomous self-healing function. ACS Appl Mater Interfaces. 2018;10(14):11972–11978.
  • Zhuo Y, Wang F, Xiao S, et al. One-step fabrication of bioinspired lubricant regenerable icephobic slippery liquid-infused porous surfaces. ACS Omega. 2018;3(8):10139–10144.
  • Wang C, Fuller T, Zhang W, et al. Thickness dependence of ice removal stress for a polydimethylsiloxane nanocomposite: Sylgard 184. Langmuir. 2014;30(43):12819–12826.
  • Sarkar DK, Farzaneh M. Superhydrophobic coatings with reduced ice adhesion. J Adhes Sci Technol. 2009;23(9):1215–1237.
  • Jellinek HHG. Adhesive properties of ice. J Colloid Sci. 1959;14(3):268–280.
  • Yeong Y, Sokhey J, Loth E. Ice adhesion on superhydrophobic coatings in an icing wind tunnel. Berlin, Heidelberg: Springer; 2017.
  • Schaaf J, Kauffeld M. Ice aluminum debonding with induction heating. J Adhes Sci Technol. 2018;32(19):2111–2127.
  • Kulinich SA, Farzaneh M. Ice adhesion on super-hydrophobic surfaces. Appl Surf Sci. 2009;255(18):8153–8157.
  • Kulinich SA, Farzaneh M. How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir. 2009;25(16):8854–8856.
  • Menini R, Farzaneh M. Elaboration of al2o3/ptfe icephobic coatings for protecting aluminum surfaces. Surf Coat Technol. 2009;203(14):1941–1946.
  • Guerin F, Laforte C, Farinas M-I, et al. Analytical model based on experimental data of centrifuge ice adhesion tests with different substrates. Cold Reg Sci Technol. 2016;121:93–99.
  • Kulinich SA, Farzaneh M. On ice-releasing properties of rough hydrophobic coatings. Cold Reg Sci Technol. 2011;65(1):60–64.
  • Douglas RG, Palacios J, Schneeberger G. Design, fabrication, calibration, and testing of a centrifugal ice adhesion test rig with strain rate control capability. In 2018 Atmospheric and Space Environments Conference, Atlanta, Georgia; 2018.
  • Janjua ZA, Turnbull B, Choy K-L, et al. Performance and durability tests of smart icephobic coatings to reduce ice adhesion. Appl Surf Sci. 2017;407:555–564.
  • Lou D, Hammond D, Pervier M-L. Investigation of the adhesive properties of the ice–aluminum interface. J Aircraft. 2014;51(3):1051–1056.
  • Rønneberg S, Laforte C, Volat C, et al. The effect of ice type on ice adhesion. AIP Adv. 2019;9(5):055304.
  • Mulherin ND, Haehnel RB, Jones KF. Toward developing a standard shear test for ice adhesion. In 8th International Workshop on Atmospheric Icing of Structures, Reykjavík, Iceland; 1998. p. 73–79.
  • Magnum engineers, ice adhesion test rig te-10k-iat; 2018. http://magnumengg.com/product/ice-adhesion-test-rig-te-10k-iat/. Accessed on 2018-08-29
  • Løset S, Shkhinek KN, Gudmestad OT, et al. Actions from ice on Arctic offshore and coastal structures: student’s book for institutes of higher education. St. Petersburg: LAN; 2006.
  • Petrenko VF, Whitworth RW. Physics of ice. Great Britain: Oxford University Press; 2006.
  • Armstrong T, Roberts B, Swithinbank C. Illustrated glossary of snow and ice. Cambridge: Scott Polar Research Institute; 1973.
  • Fortin G, Perron J. Ice adhesion models to predict shear stress at shedding. J Adhes Sci Technol. 2012;26(4–5):523–553.
  • Makkonen L. Atmospheric icing on sea structures. Hanover, USA: Cold Regions Research and Engineering Lab; 1984.
  • Work AH, Gyekenyesi AL, Kreeger RE, et al. The adhesion strength of impact ice measured using a modified lap joint test. Conference paper at “AIAA Aviation Forum”. Location: Atlanta, GA; United States; June 25-28, 2018.
  • Vargas M, Broughton H, Sims JJ, et al. Local and total density measurements in ice shapes. J Aircraft. 2007;44(3):780–789.
  • Thompson DS, Meng D, Afshar A, et al. Initial development of a model to predict impact ice adhesion stress. In 2018 Atmospheric and Space Environments Conference, Atlanta, Georgia; 2018.
  • Scavuzzo RJ, Chu ML. Structural properties of impact ices accreted on aircraft structures. Report, NASA, Akron, Ohio, USA; 1987.
  • Schutzius TM, Jung S, Maitra T, et al. Physics of icing and rational design of surfaces with extraordinary icephobicity. Langmuir. 2015;31(17):4807–4821.
  • Macklin WC. The density and structure of ice formed by accretion. QJ Royal Met Soc. 1962;88(375):30–50.
  • Clark V. Icing nomenclature. Report, U. S. Air Material Command, Harvard-Mt. Washington Icing Research Report 1946-1947; 1948.
  • Cebeci T, Kafyeke F. Aircraft icing. Annu Rev Fluid Mech. 2003;35(1):11–21.
  • Kulinich SA, Farhadi S, Nose K, et al. Superhydrophobic surfaces: are they really ice-repellent? Langmuir. 2011;27(1):25–29.
  • Matsumoto K, Tsubaki D, Sekine K, et al. Influences of number of hydroxyl groups and cooling solid surface temperature on ice adhesion force. Int J Refrig. 2017;75:322–330.
  • Golovin K, Tuteja A. A predictive framework for the design and fabrication of icephobic polymers. Sci Adv. 2017;3(9):e1701617.
  • Andrews EH, Lockington NA. The cohesive and adhesive strength of ice. J Mater Sci. 1983;18(5):1455–1465.
  • Jones KF. The density of natural ice accretions related to nondimensional icing parameters. QJ Royal Met Soc. 1990;116(492):477–496.
  • Lei G-L, Dong W, Zheng M, et al. Numerical investigation on heat transfer and melting process of ice with different porosities. Int J Heat Mass Transf. 2017;107:934–944.
  • Prodi F, Levi L, Pederzoli P. The density of accreted ice. Q J Royal Meteorol Soc. 1986;112(474):1081–1090.
  • Skelton PLI, Poots G. The effect of density variations during rime growth on overhead transmission line conductors. Cold Reg Sci Technol. 1994;22(4):311–317.
  • Klein-Paste A, Wåhlin J. Wet pavement anti-icing — a physical mechanism. Cold Reg Sci Technol. 2013;96:1–7.
  • Wang C, Gupta MC, Yeong YH, et al. Factors affecting the adhesion of ice to polymer substrates. J Appl Polym Sci. 2018;135(24):45734.
  • Liu Y, Li L, Hu H. An experimental study on the transient heat transfer and dynamic ice accretion process over a rotating UAS propeller. 9th AIAA Atmospheric and Space Environments Conference, Denver, Colorado, USA; 2017.
  • Schulson EM, Lim PN, Lee RW. A brittle to ductile transition in ice under tension. Philos Mag A. 1984;49(3):353–363.
  • Dempsey JP, Defranco SJ, Adamson RM, et al. Scale effects on the in-situ tensile strength and fracture of ice part i: large grained freshwater ice at spray lakes reservoir, alberta. Int J Fract. 1999;95(1/4):325.
  • Løset S, Shkhinek K, Høyland KV. Ice physics and mechanics. Trondheim: Norwegian University of Science and Technology; 1998.
  • Schulson EM. The structure and mechanical behavior of ice. JOM. 1999;51(2):21–27.
  • Irgens F. Continuum mechanics. Berlin: Springer; 2008.
  • Oksanen P. Friction and adhesion of ice. Thesis, Helsinki, Finland: Helsinki University of Technology; 1983.
  • Haehnel RB, Mulherin ND. The bond strength of an ice-solid interface loaded in shear. 14th International symposium of Ice, Potsdam, New York, USA; 1998. p. 597–606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.