257
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Microstructure and mechanical properties of laser high-velocity impact welded Ta/Cu joints

, , , , &
Pages 2333-2351 | Received 03 Nov 2019, Accepted 15 Apr 2020, Published online: 29 Apr 2020

References

  • Zhou F, Zhang Q, Shi M, et al. The effect of TIG arc brazing current on interfacial structure and bonding strength of tin-based babbitt. J Adhes Sci Technol. 2017;31(21):2312–2322.
  • Li XJ, Ma HH, Shen ZW. Research on explosive welding of aluminum alloy to steel with dovetail grooves. Mater Des. 2015;87:815–824.
  • Mikheev AA, Zeer GM, Fomenko OY, et al. Study of the microstructure and distribution of elements in diffusion welded joints of tantalum with copper and VT14 titanic alloy. Bull Russ Acad Sci Phys. 2011;75(8):1096–1098.
  • Zhou FM, Zhang FQ, Song FY, et al. Vacuum diffusion bonding and interfacial structure in Ta/Cu couple. Rare Metal Mat Eng. 2013;42:1785–1789.
  • Pushkin MS, Inozemtsev AV, Greenberg BA, et al. Quasi-wave shape of an interface upon explosion welding copper–tantalum, copper–titanium. Bull Russ Acad Sci Phys. 2016;80(10):1273–1278.
  • Zhang J, Xiao Y, Luo GQ, et al. Effect of Ni interlayer on strength and microstructure of diffusion-bonded Mo/Cu joints. Mater Lett. 2012;66(1):113–116.
  • Zhang J, Shen Q, Luo GQ, et al. Microstructure and bonding strength of diffusion welding of Mo/Cu joints with Ni interlayer. Mater Des. 2012;39:81–86.
  • Gao LF, Li XF, Hua P, et al. Nickel interlayer on the microstructure and property of TC6 to copper alloy diffusion bonding. J Adhes Sci Technol. 2018;32(14):1548–1559.
  • Sysoev AP, Sergeev AV, Kazakov NF. Diffusion welding of copper-chromium pseudoalloy to copper. Powder Metall Met Ceram. 1984;23(10):780–781.
  • Zhang Y, Babu SS, Prothe C, et al. Application of high velocity impact welding at varied different length scales. J Mater Process Technol. 2011;211(5):944–952.
  • Wang X, Gu CX, Zheng YY, et al. Laser shock welding of aluminum/aluminum and aluminum/copper plates. Mater Des. 2014;56:26–30.
  • Gu YX, Wang X, Hao ES, et al. Experimental study on laser impact welding of dissimilar metals. Key Eng Mater. 2014;621:19–24.
  • Wang X, Gu YX, Qiu TB, et al. An experimental and numerical study of laser impact spot welding. Mater Des. 2015;65:1143–1152.
  • Wang X, Zhang HF, Shen ZB, et al. Experimental and numerical investigation of laser shock synchronous welding and forming of Copper/Aluminum. Opt Lasers Eng. 2016;86:291–302.
  • Wang X, Luo YP, Huang T, et al. Experimental investigation on laser impact welding of Fe-based amorphous alloys to crystalline copper. Materials. 2017;10:523.
  • Wang X, Shao M, Jin H, et al. Laser impact welding of aluminum to brass. J Mater Process Technol. 2019;269:190–199.
  • Liu HX, Gao S, Yan Z, et al. Investigation on a novel laser impact spot welding. Metals. 2016;6(8):179.
  • Li JW, Liu HX, Shen ZB, et al. Formability of micro-gears fabrication in laser dynamic flexible punching. J Mater Process Technol. 2016;234:131–142.
  • Montross CS, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue. 2002;24(10):1021–1036.
  • Liu HX, Shen ZB, Wang X, et al. Numerical simulation and experimentation of a novel micro scale laser high speed punching. Int J Mach Tools Manuf. 2010;50(5):491–494.
  • Wang X, Tang H, Shao M, et al. Laser impact welding: investigation on microstructure and mechanical properties of molybdenum-copper welding joint. Int J Refract Met Hard Mater. 2019;80:1–10.
  • Bahrani AS, Black TJ, Crossland B. The mechanics of wave formation in explosive welding. Proc R Soc A: Math Phys Eng Sci. 1967;296:123–136.
  • Xia HB, Wang SG, Ben HF. Microstructure and mechanical properties of Ti/Al explosive cladding. Mater Des. 2014;56:1014–1019.
  • Gen HH, Xia ZH, Zhang X, et al. Microstructures and mechanical properties of the welded AA5182/HC340LA joint by magnetic pulse welding. Mater Charact. 2018;138:229–237.
  • Sun W, Li XJ, Yan HH, et al. An alternative thin-plate welding technology using underwater shock wave. J Adhes Sci Technol. 2012;26(10–11):1733–1743.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.