1,081
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Application of atomic force microscopy in adhesion force measurements

, &
Pages 221-241 | Received 05 Mar 2020, Accepted 16 Jul 2020, Published online: 20 Aug 2020

References

  • Huang YY, Weixing Z, Hsia KJ, et al. Stamp collapse in soft lithography. J Langmuir. 2005;21(17):8058–8068.
  • Leite FL, Bueno CC, Róz AL, et al. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy. Int J Mol Sci. 2012;13(10):12773–12856.
  • Brogly PM. Forces involved in adhesion. In: da Silva LFM, Öchsner A, Adams RD, editors. Handbook of adhesion technology. Berlin, Heidelberg (Germany): Springer; 2011.
  • Marti O. Measurement of adhesion and pull-off forces with the AFM. In: Bhushan B, editor. Handbook of modern tribology. CRC: Materials Science; 1992.
  • Hubbard T. 2002. Encyclopedia of Surface and Colloid Science. CRC Press, 2002(1):18-5642.
  • Maeda N, Chen N, Tirrell M, et al. Adhesion and friction mechanisms of polymer-on-polymer surfaces. J Sci. 2002;297(5580):379–382.
  • Corn M. The adhesion of solid particles to solid surfaces, I. A Review Morton Corn Ph.D. J Air Poll Control Assoc. 2012;11:523–528.
  • Serri M, Mannini M, Poggini L, et al. Low-temperature magnetic force microscopy on single molecule magnet-based microarrays. Nano Lett. 2017;17(3):1899–1905.
  • Colson J, Andorfer L, Nypelö TE, et al. Comparison of silicon and OH-modified AFM tips for adhesion force analysis on functionalised surfaces and natural polymers. Colloids Surf A Physicochem Eng Asp. 2017;529:363–372.
  • Xia D, Zhang S, Hjortdal JO, et al. Hydrated human corneal stroma revealed by quantitative dynamic atomic force microscopy at nanoscale. ACS Nano. 2014;8(7):6873–6882.
  • Lv X, Fan W, Wang J, et al. Study on adhesion of asphalt using AFM tip modified with mineral particles. J Constr Build Mater. 2019;207:422–430.
  • Ma W, Huang T, Guo S, et al. Atomic force microscope study of the aging/rejuvenating effect on asphalt morphology and adhesion performance. J Constr Build Mater. 2019;205:642–655.
  • Pillet F, Dague E, Pečar Ilić J, et al. Changes in nanomechanical properties and adhesion dynamics of algal cells during their growth. Bioelectrochemistry. 2019;127:154–162.
  • Dolan GK, Cartwright B, Bonilla MR, et al. Probing adhesion between nanoscale cellulose fibres using AFM lateral force spectroscopy: the effect of hemicelluloses on hydrogen bonding. Carbohydr Polym. 2019;208:97–107.
  • Czerwieniec B, Strawski M, Granicka LH, et al. AFM study of adhesion and interactions between polyelectrolyte bilayers assembly. Colloids Surf, A. 2018;555:465–472.
  • Chen Y, Meng J, Zh G, et al. Bioinspired multiscale wet adhesive surfaces: structures and controlled adhesion. Adv Funct Mater. 2019;30:1905287.
  • Huber G, Gorb SN, Spolenak R, et al. Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett. 2005;1(1):2–4.
  • Huber G, Mantz H, Spolenak R, et al. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci USA. 2005;102(45):16293–16296.
  • Lin AYM, Brunner R, Chen PY, et al. Underwater adhesion of abalone: the role of van der Waals and capillary forces. Acta Mater. 2009;57(14):4178–4185.
  • Dos Santos Ferreira O, Gelinck E, Graaf D, et al. Adhesion experiments using an AFM—parameters of influence. Appl Surf Sci. 2010;257(1):48–55.
  • Sadegh Hassani S, Afzali J, Khosravi M. Atomic force microscopy. Tehran (Iran): Gisoom Publisher; 2014.
  • Sobat Z, Sadegh Hassani S. An overview of scanning near field optical microscopy in characterization of nanomaterials. Int J Nano Dim. 2014;5:203–308.
  • Sadegh HS. Scanning tunneling microscopy and its application under electrochemical conditions. 2nd ed. Delhi (India): RIPI Publisher; 2011.
  • Vahabi S, Nazemi Salman B, Javanmard A. Atomic force microscopy application in biological research: a review study. Iran J Med Sci. 2013;38(2):76–83.
  • Sadegh Hassani S, Sobat Z, Aghabozorg HR. Scanning probe lithography as a tool for studying of various surfaces. Nano Sci Nanotechnol: Indian J. 2008;2:94–98.
  • Sadegh Hassani S, Aghabozorg HR. Nanolithography study using scanning probe microscope. London, UK: InTech Publisher; 2011.
  • Gavara N. A beginner’s guide to atomic force microscopy probing for cell mechanics. Microsc Res Tech. 2017;80(1):75–84.
  • Cartagena-Rivera AX, Logue JS, Waterman CM, et al. Actomyosin cortical mechanical properties in nonadherent cells determined by atomic force microscopy. Biophys J. 2016;110(11):2528–2539.
  • Lee H, Adams WJ, Alford PW, et al. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes. Exp Biol Med. 2015;240(11):1543–1554.
  • Marthi O. 2000. Measurement of adhesion and pull-off forces with the AFM Handbook of Modern Tribology. London, UK: CRC.
  • Sadegh Hassani S, Sobat Z, Aghabozorg HR. Nanometer-scale patterning on PMMA resist by force microscopy lithography Iran. J Chem Eng. 2008;27:29–34.
  • Dienwiebel M, Verhoeven GS, Pradeep N, et al. Superlubricity of graphite. J Phys Rev Lett. 2004;92:126101.
  • Sadegh Hassani S, Sobat Z, Aghabozorg HR. Force nanolithography on various surfaces by atomic force microscope. IJNM. 2010;5(3–4):217–224.
  • Sadegh Hassani S, Sobat Z. Studying of various nanolithography methods by using Scanning Probe Microscope. Int J Nano Dim. 2011;1(3):159–175.
  • Aghabozorg HR, Sadegh Hassani S, Salehirad F. Crystal growth study of nano-zeolite by atomic force microscopy. London, UK: InTech Publisher; 2012.
  • Jiang Y, Turner K. Measurement of the strength and range of adhesion using atomic force microscopy. Extreme Mech Lett. 2016;9:119–126.
  • Razatos A, Ong YL, Sharma MM, et al. Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc Natl Acad Sci USA. 1998;95(19):11059–11064.
  • Dehnert M, Magerle R. 3D depth profiling of the interaction between an AFM tip and fluid polymer solutions. J Nanoscale. 2018;10(12):5695–5707.
  • Vadillo-Rodríguez V, Busscher HJ, Norde W, et al. On relations between microscopic and macroscopic physicochemical properties of bacterial cell surfaces: an AFM study in Streptococcus mitis strains. J Langmuir. 2003;19(6):2372–2377.
  • Stukalov O, Korenevsky A, Beveridge TJ, et al. use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules. Appl Environ Microbiol. 2008;74(17):5457–5465.
  • Butt HJ, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep. 2005;59(1–6):1–152.
  • Touhami A, Jericho MH, Boyd JM, et al. Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy. J Bacteriol. 2006;188(2):370–377.
  • Vadillo-Rodriguez V, Busscher HJ, Norde W, et al. Relations between macroscopic and microscopic adhesion of Streptococcus mitis strains to surfaces. Microbiology. 2004;150(4):1015–1022.
  • Qin C, Clarke K, Li K. Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnol Biofuels. 2014;7:651–659.
  • Kanyong P, Krampa FD, Aniweh Y, et al. Enzyme-based amperometric galactose biosensors: a review. Mikrochim Acta. 2017;184(10):3663–3671.
  • Fang RH, Jiang Y, Fang JC, et al. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials. 2017;128:69–83.
  • Othman Z, Cillero Pastor B, van Rijt S, et al. Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials. 2018;167:191–204.
  • Zhuang W, Zhang Y, Zhu J, et al. Influences of geometrical topography and surface chemistry on the stable immobilization of adenosine deaminase on mesoporous TiO2. Chem Eng Sci. 2016;139:142–151.
  • Muller DJ, Dufrene YF. Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol. 2011;21:461–469.
  • Garcia R, Proksch R. Nanomechancial mapping of soft matter by bimodal force microscopy. Eur Polym J. 2013;49(8):1897–1906.
  • Ando T, Uchihashi T, Kodera N. High-speed AFM and applications to biomolecular systems. Annu Rev Biophys. 2013;42:393–414.
  • Dong Y, Ji X, Laaksonen A, et al. Determination of the small amount of proteins interacting with TiO2 nanotubes by AFM-measurement. J Biomater. 2019;192:368–376.
  • Acerbi I, Luque T, Gimenez A, et al. Integrin-specific mechanoresponses to compression and extension probed by cylindrical flat-ended afm tips in lung cells. PLoS One. 2012;7(2):e32261.
  • Moreno-Cencerrado A, Iturri J, Pecorari I, et al. Investigating cell–substrate and cell–cell interactions by means of single-cell-probe force spectroscopy. Microsc Res Tech. 2017;80(1):124–130.
  • Tranchida D, Kiflie Z, Acierno S, et al. Nanoscale mechanical characterization of polymers by atomic force microscopy (AFM) nanoindentations: viscoelastic characterization of a model material. Meas Sci Technol. 2009;20(9):095702.
  • Vakarelski IU, Toritani A, Nakayama M, et al. Deformation and adhesion of elastomer microparticles evaluated by AFM. Langmuir. 2001;17(16):4739–4745.
  • Buzio R, Bosca A, Krol S, et al. Deformation and adhesion of elastomer poly(dimethylsiloxane) colloidal AFM probes. Langmuir. 2007;23(18):9293–9302.
  • Sun Y, Walker GC. Viscoelastic response of poly(dimethylsiloxane) in the adhesive interaction with AFM tips. Langmuir. 2005;21(19):8694–8702.
  • Maugis D, Barquins M. Fracture mechanics and the adherence of viscoelastic bodies. J Phys D: Appl Phys. 1978;11(14):1989–2023.
  • Greenwood JA, Johnson KL. Oscillatory loading of a viscoelastic adhesive contact. J Colloid Interface Sci. 2006;296(1):284–291.
  • Maver U, Velnar T, Gaberšček M, et al. Recent progressive use of atomic force microscopy in biomedical applications. Trends Analyt Chem. 2016;80:96–111.
  • Tsukada M, Irie R, Yonemochi Y, et al. Adhesion force measurement of a DPI size pharmaceutical particle by colloid probe atomic force microscopy. J Power Technol. 2004;141(3):262–269.
  • Louey MD, Mulvaney P, Stewart PJ. Characterization of adhesional properties of lactose carriers using atomic force microscopy. J Pharm Biomed Anal. 2001;25(3–4):559–567.
  • Chen L, Gu X, Fasolka MJ, et al. Effects of humidity and sample surface free energy on AFM probe-sample interactions and lateral force microscopy image contrast. Langmuir. 2009;25(6):3494–3503.
  • Nguyen T, Gu X, Fasolka M, Briggman K, Hwang J, Karim A, Martin J. Mapping chemical heterogeneity of polymeric materials with chemical force microscopy. Polymeric Materials: Science & Engineering. 2004;90:141.
  • Gu X, Chen L, Xu C, Julthongpiput D, Fasolka MJ, Nguyen T. Effect of Relative Humidity on Chemical Heterogeneity Imaging with Atomic Force Microscopy, Mater. Res Soc Symp. 2008;1025:B16-10.
  • Sirghi L, Nakamura M, Hatanaka Y, et al. Atomic force microscopy study of the hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering and plasma enhanced chemical vapor depositions. Langmuir. 2001;17(26):8199–8203.
  • Chen CH, Ravenhill ER, Momotenko D, et al. Impact of surface chemistry on nanoparticle-electrode interactions in the electrochemical detection of nanoparticle collisions. Langmuir. 2015;31(43):11932–11942.
  • Ishida N, Inoue T, Miyahara M, et al. Nano bubbles on a hydrophobic surface in water observed by tapping mode atomic force microscopy. Langmuir. 2000;16(16):6377–6380.
  • Tyrrell JWG, Attard P. Images of nanobubbles on hydrophobic surfaces and their interactions. Phys Rev Lett. 2001;87(17):176104.
  • Jadhav S, Eggleton CD, Konstantopoulos K. Mathematical modeling of cell adhesion in shear flow: application to targeted drug delivery in inflammation and cancer metastasis. J Curr Pharm Des. 2007;13(15):1511–1526.
  • Silverstein TD, Gibb B, Greene EC. Visualizing protein movement on DNA at the single-molecule level using DNA curtains. DNA Repair. 2014;20:94–109.
  • Zafar U, Hare C, Hassanpour A, et al. Drop test: a new method to measure the particle adhesion force. Powder Technol. 2014;264:236–241.
  • Lombardo M, Carbone G, Lombardo G, et al. Analysis of intraocular lens surface adhesiveness by atomic force microscopy. J Cataract Refract Surge. 2009;35:1266–1272.
  • Buehl W, Findl O, Menapace R, et al. Effect of an acrylic intraocular lens with a sharp posterior optic edge on posterior capsule opacification. J Cataract Refract Surg. 2002;28:1105–1111.
  • Nagamoto T, Fujiwara T. Inhibition of lens epithelial cell migration at the intraocular lens optic edge: role of capsule bending and contact pressure. J Cataract Refract Surg. 2003;29(8):1605–1612.
  • Nishi O, Nishi K, WickströM K. Preventing lens epithelial cell migration using intraocular lenses with sharp rectangular edges. J Cataract Refract Surg. 2000;26(10):1543–1549.
  • Klymov A, Prodanov L, Lamers E, et al. Understanding the role of nano-topography on the surface of a bone-implant. Biomater Sci. 2013;1(2):135–151.
  • Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys. 2008;473(2):201–209.
  • Lamers E, Te Riet J, Domanski M, et al. Dynamic cell adhesion and migration on nanoscale grooved substrates. Eur Cell Mater. 2012;23:182–193.
  • Frisbie CD, Rozsnyai LF, Noy A, et al. Functional group imaging by chemical force microscopy. Science. 1994;265(5181):2071–2074.
  • Spedden E, Staii C. Neuron biomechanics probed by atomic force microscopy. Int J Mol Sci. 2013;14(8):16124–16140.
  • Ebenstein DM. Nano-JKR force curve method overcomes challenges of surface detection and adhesion for nanoindentation of a compliant polymer in air and water. J Mater Res. 2011;26(8):1026–1035.
  • Kohn JC, Ebenstein DM. Eliminating adhesion errors in nanoindentation of compliant polymers and hydrogels. J Mech Behav Biomed Mater. 2013;20:316–326.
  • Cao YF, Yang DH, Soboyejoy W. Nanoindentation method for determining the initial contact and adhesion characteristics of soft polydimethylsiloxane. J Mater Res. 2005;20(8):2004–2011.
  • Carrillo F, Gupta S, Balooch M, et al. Nanoindentation of polydimethylsiloxane elastomersL effect of crosslinking, work of adhesion, and fluid environment on elastic modulus. J Mater Res. 2005;20(10):2820–2830.
  • Korayem MH, Zakeri M. Dynamic modeling of manipulation of micro/nanoparticles on rough surfaces. Appl Surf Sci. 2011;257(15):6503–6513.
  • Tafazzoli A, Sitti M. Dynamic behavior and simulation of nanoparticles sliding during nanoprobe-based positioning. Paper presented at the ASME International Mechanical Engineering Congress IMECE’04; 2004 November 13–19; Anaheim, CA.
  • Korayem MH, Zakeri M. Sensitivity analysis of nanoparticles pushing critical conditions in 2-D controlled nanomanipulation based on AFM. Int J Adv Manuf Technol. 2009;41(7–8):714–726.
  • Katsikogianni M, Missirlis YF, Katsikogianni M, et al. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater. 2004;8:37–57.
  • Zhang J, Ebbens S, Chen X, et al. Determination of the surface free energy of crystalline and amorphous lactose by atomic force microscopy adhesion measurement. J Pharm Res. 2006;23(2):401–407.
  • Norouzi D, Müller MM, Deserno M. How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: a theoretical analysis. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;74(6):061914.
  • Karoussi O, Skovbjerg LL, Hassenkam T, et al. AFM study of calcite surface exposed to stearic and heptanoic acids. Colloids Surf, A. 2008;325(3):107–114.
  • Sletmoen M, Maurstad G, Sikorski P, et al. Characterisation of bacterial polysaccharides: steps towards single-molecular studies. Carbohydr Res. 2003;338(23):2459–2475.
  • Cowman MK, Spagnoli DC, Kudasheva M, et al. Extended, relaxed, and condensed conformations of hyaluronan observed by atomic force microscopy. Biophys J. 2005;88(1):590–602.
  • Fang HHP, Chan KY, Xu L-C. Quantification of bacterial adhesion forces using AFM. J Microbiol Methods. 2000;40(1):89–97.
  • Schaer-Zammaretti P, Ubbink J. Imaging of lactic acid bacteria with AFM-elasticity and adhesion maps and their relationship to biological and structural data. Ultramicroscopy. 2003;97(1–4):199–208.
  • Strus MC, Zalamea L, Raman R, et al. Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. Nano Lett. 2008;8(2):544–550.
  • Jiang T, Zhu Y. Measuring graphene adhesion using atomic force microscopy with a microsphere tip. Nanoscale. 2015;7(24):10760–10766.
  • Rusu F, Pustan M, Bîrleanu C, et al. Analysis of the surface effects on adhesion in MEMS structures. Appl Surf Sci. 2015;358:634–640.
  • Zheng N, He J, Gao J, et al. Adhesion force measured by atomic force microscopy for direct carbon fiber-epoxy interfacial characterization. Mater Des. 2018;145:218–225.
  • Tang T, Jagota A, Hui CY. Adhesion between single-walled carbon nanotubes. J Appl Phys. 2005;97(7):074310.
  • Ellmer K. Past achievements and future challenges in the development of optically transparent electrodes. Nat Photon. 2012;6(12):809–817.
  • Rajanna PM, Luchkin SY, Larionov KV, et al. Adhesion of single-walled carbon nanotube thin films with different materials. J Phys Chem Lett. 2020;11(2):504–509.
  • Soroceanu M, Barzic AI, Stoica I, et al. Plasma effect on polyhydrosilane/metal interfacial adhesion/cohesion interactions. Int J Adhes Adhes. 2017;74:131–136.
  • Efremov YF, Bagrov DV, Kirpichnikov MP, et al. Application of the Johnson-Kendall-Roberts model in AFM-based mechanical measurements on cells and gel. Colloids Surf B Biointerfaces. 2015;134:131–139.
  • Jafari H, Shahrousvand M, Kaffashi B. Reinforced poly(-caprolactone) bimodal foams via phospho-calcified cellulose nanowhisker for osteogenic differentiation of human mesenchymal stem cells. ACS Biomater Sci Eng. 2018;4(7):2484–2493.
  • Ribba L, Tamayo L, Flores M, et al. Asymmetric biphasic hydrophobic/hydrophilic poly(lactic acid)–polyvinyl alcohol meshes with moisture control and noncytotoxic: effects for wound dressing applications. J Appl Polym Sci. 2019;136(17):47369.
  • Tamayo-Ramos JA, Rumbo C, Caso F, et al. 2018. Analysis of polycaprolactone microfibers as biofilm carriers for biotechnologically relevant bacteria. ACS Appl Mater Interfaces. 10: 32773–32781.
  • Zheng Y, He L, Asiamah TK, et al. Colonization of medical devices by Staphylococci. Environ Microbiol. 2018;20(9):3141–3153.
  • Tamayo L, Melo F, Caballero L, et al. Does bacterial elasticity affect adhesion to polymer fibers. ACS Appl Mater Interfaces. 2020;12(12):14507–14517.
  • Wang H, Wilksch JJ, Chen L, et al. Influence of fimbriae on bacterial adhesion and viscoelasticity and correlations of the two properties with biofilm formation. Langmuir. 2017;33(1):100–106.
  • Guo Sh Kwek MY, Toh ZQ, Pranantyo D, et al. Tailoring polyelectrolyte architecture to promote cell growth and inhibit bacteria adhesion. ACS Appl Mater Interfaces. 2018;10(9):7882–7891.
  • Olsson ALJ, van der Mei HC, Busscher HJ, et al. Novel analysis of bacterium-substratum bond maturation measured using a quartz crystal microbalance. Langmuir. 2010;26(13):11113–11117.
  • Bol M, Ehret AE, Bolea Albero A, et al. Recent advances in mechanical characterisation of biofilm and their significance for material modelling. Crit Rev Biotechnol. 2013;33(2):145–171.
  • Beech IB, Smith JR, Steele AA, et al. The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloid Surf B. 2002;23(2–3):231–247.
  • Dufrene YF. Towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol. 2008;6:674–680.
  • Webb HK, Truong VK, Hasan J, et al. Physico-mechanical characterisation of cells using atomic force microscopy – current research and methodologies. J Microbiol Methods. 2011;86(2):131–139.
  • Auerbach ID, Sorensen C, Hansma HG, et al. Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. J Bacteriol. 2000;182(13):3809–3815.
  • Oh YJ, Jo W, Yang Y, et al. Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy. Ultramicroscopy. 2007;107(10–11):869–874.
  • Oh YJ, Lee NR, Jo W, et al. Effects of substrates on biofilm formation observed by atomic force microscopy. Ultramicroscopy. 2009;109(8):874–880.
  • Volle CB, Ferguson MA, Aidala KE, et al. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy. Colloids Surf B Biointerfaces. 2008;67(1):32–40.
  • Wang D, Fujinami S, Nakajima K, et al. Visualization of nanomechanical mapping on polymer nanocomposites by AFM force measurement. Polymer. 2010;51(12):2455–2459.
  • Oras S, Vlassov S, Berholts M, et al. Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces. Beilstein J Nanotechnol. 2018;9:660–670.
  • Li Y, Huang S, Wei C, et al. Adhesion of two-dimensional titanium carbides (MXenes) and graphene to silicon. Nat Commun. 2019;10(1):3014.
  • Lomboy G, Sundararajan S, Wang K, et al. A test method for determining adhesion forces and Hamaker constants of cementitious materials using atomic force microscopy. Cem Concr Res. 2011;41(11):1157–1166.
  • Das S, Sreeram PA, Raychaudhuri AK. A method to quantitatively evaluate the Hamaker constant using the jump-into-contact effect in atomic force microscopy. Nanotechnology. 2007;18(3):035501.
  • Lu D, Zhang T, Gutierrez L, et al. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion. Environ Sci Technol. 2016;50(9):4668–4674.
  • Kwok DY, Neumann AW. Contact angle interpretation in terms of solid surface tension. Colloids Surf A: Physicochem Eng Asp. 2000;161(1):31–48.
  • Pawlak R, Kawai S, Meier T, et al. Single-molecule manipulation experiments to explore friction and adhesion. J Phys D: Appl Phys. 2017;50(11):113003.
  • Li S, Li Q, Carpick RW, et al. The evolving quality of frictional contact with graphene. Nature. 2016;539(7630):541–546.
  • Zeng X, Peng Y, Yu M, et al. Dynamic sliding enhancement on friction and adhesion of graphene, graphene oxide and fluorinated graphene. ACS Appl Mater Interfaces. 2018;10(9):8214–8224.
  • Kan H, Nakamura H, Watano S. Effect of droplet size on particle–particle adhesion of colliding particles through droplet. Powder Technol. 2017;321:318–325.
  • Chen S, Li SQ, Arshall JSM. Exponential scaling in early-stage agglomeration of adhesive particles in turbulence. Phys Rev Fluids. 2019;4(2):024304.
  • Li X, Dong M, Jiang D, et al. The effect of surface roughness on normal restitution coefficient, adhesion force and friction coefficient of the particle-wall collision. Powder Technol. 2020;362(15):17–25.
  • Rabinovich YI, Adler JJ, Ata A, et al. Adhesion between nanoscale rough surfaces II. measurement and comparison with theory. J Colloid Interface Sci. 2000;232(1):17–24.
  • LaMarche CQ, Leadley S, Liu P, et al. Method of quantifying surface roughness for accurate adhesive force predictions. Chem Eng Sci. 2017;158(2):140–153.
  • Lhernould M, Delchambre A, Regnier S, et al. Electrostatic forces in miromanipulations: review of analytical models and simulations including roughness. Appl Surf Sci. 2007;253(14):6203–6210.
  • Eichenlaub S, Gelb A, Beaudoin S. Roughness models for particle adhesion. J Colloid Interface Sci. 2004;280(2):289–298.
  • Li Q, Elimelech M. Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms. Environ Sci Technol. 2004;38(17):4683–4693.
  • Wang L, Miao R, Wang X, et al. Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes: characterization from microforces. Environ Sci Technol. 2013;47(8):3708–3714.
  • Jin X, Kasal B. Adhesion force mapping on wood by atomic force microscopy: influence of surface roughness and tip geometry. R Soc Open Sci. 2016;3(10):160248.
  • Stegemann B, Backhaus H, Kloss H, et al. Spherical AFM probes for adhesion force measurements on metal single crystals. Modern Res Educ Top Microsc. 2007;3:820–827.
  • Tromas C, Garcia R. Interaction forces with carbohydrates measured by atomic force microscopy. Host–Guest Chem. 2001;218:115–132.
  • Lorenz B, Ceccato M, Andersson MP, et al. Salinity-dependent adhesion response properties of aluminosilicate (K-Feldspar) surfaces. Energy Fuels. 2017;31(5):4670–4680.
  • Yiu Y. Atomic force microscopy sees a bright future with simultaneous fluorescence imaging. 2018;2018(9):090002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.