166
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, characterization and anti-corrosion properties of two new Schiff bases derived from diamino diphenyl ether on carbon steel X48 in 1M HCl

, , ORCID Icon, , &
Pages 559-589 | Received 14 Apr 2020, Accepted 22 Aug 2020, Published online: 15 Sep 2020

References

  • Ebenso EE. Effect of halide ions on the corrosion inhibition of mild steel in H2SO4 using methyl red: Part 1. Bull Electrochem. 2003;19:209–216.
  • El Ashry HE, El Nemr A, Esawy SA, et al. Quantum chemical studies on the corrosion inhibitions of steel in acidic medium by some triazole, oxadiazole and thiadiazole derivatives. Electrochim Acta. 2006;51(19):3957–3968.
  • Sasikumar Y, Adekunle AS, Olasunkanmi LO, et al. Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium. J Mol Liq. 2015;211:105–118.
  • Ebenso EE, Eddy NO, Odiongenyi AO. Corrosion inhibitive properties and adsorption behaviour of ethanol extract of Piper guinensis as a green corrosion inhibitor for mild steel in H2SO4. Afr J Pure Appl Chem. 2008;2:107–115.
  • Odoemelam SA, Eddy NO. Effect of pyridoxal-hydro-chloride-2,4-dinitrophenyl hydrazone on the corrosion of mild steel in HCl. J Surf Sci Technol. 2008;24:1–14.
  • Debab H, Douadi T, Daoud D, et al. Electrochemical and quantum chemical studies of adsorption and corrosion inhibition of two new Schiff bases on carbon steel in hydrochloric acid media. Int J Electrochem Sci. 2018;13:6958–6977.
  • Eddy NO, Odoemelam SA, Odiongenyi AO. Joint effect of halides and ethanol extract of Lasianthera africana on inhibition of corrosion of mild steel in H2SO4. J Appl Electrochem. 2009;39(6):849–857.
  • Anupama KK, Ramya K, Joseph A. Electrochemical and computational aspects of surface interaction and corrosion inhibition of mild steel in hydrochloric acid by Phyllanthus amarus leaf extract (PAE). J Mol Liq. 2016;216:146–155.
  • Ahamad I, Khan S, Ansari KR, et al. Primaquine: a pharmaceutically active compound as corrosion inhibitor for mild steel in hydrochloric acid solution. J Chem Pharm Res. 2011;3:703–717.
  • Yadav M, Behera D, Kumar S, et al. Experimental and quantum chemical studies on the corrosion inhibition performance of benzimidazole derivatives for mild steel in HCl. Ind Eng Chem Res. 2013;52(19):6318–6328.
  • Quraishi MA, Sardar R, Jamal D. Corrosion inhibition of mild steel in hydrochloric acid by some aromatic hydrazides. Mater Chem Phys. 2001;71(3):309–313.
  • Kaabi I, Sibous L, Douadi T, et al. X-ray structure of a new ligand: Di[(4-phenylimino) 4-diethylsalicylaldehyde] ether and electrochemical study of its copper (II) and cobalt (II) complexes. J Mol Struc. 2015;1084:216–222.
  • Averseng F, Lacroix PG, Malfant I, et al. Enhanced second harmonic generation on passing from a mono- to a dicopper(II) bis(salicylaldiminato) Schiff base complex. Inorg Chem. 2001;40(15):3797–3804.
  • Aranha PE, Souza JM, Romera S, et al. Thermal behavior of vanadyl complexes with Schiff bases derived from trans-N,N′-bis (salicylidene)-1,2-cyclohexadiamine (t-Salcn). Thermochim Acta. 2007;453(1):9–13.
  • Rikkouh RA, Douadi T, Hamani H, et al. Inhibition effect of 4,4′-thio bis{N-[(E)-phenol-3-ylmethylidene] aniline} on the corrosion of mild steel in HCl solution under stagnant condition and hydrodynamic flow. J Adhes Sci Technol. 2020;34(13):1454–1479.
  • Walker XR. Benzotriazole as a corrosion inhibitor for immersed copper. Corros. 1973;29(7):290–298.
  • Şahin EA, Tezcan F, Solmaz R, et al. Inhibitive effect of 4-amino-N-benzylidene-benzamide Schiff base on mild steel corrosion in HCl solution. J Adhes Sci Technol. 2020; 34(2):135–152.
  • Nandakumar T, Vadivel M, Thinaharan C, et al. Corrosion inhibition of mild steel in 1 M HCl using Tamarindus indica extract: electrochemical, surface and spectroscopic studies. J Adhes Sci Technol. 2020; 34(7):713–743.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision A.02. Wallingford (CT): Gaussian, Inc; 2016.
  • Materials studio, 7.0. San Diego (CA): Accelrys Inc.; 2013.
  • Guo L, Zhu S, Zhang S, et al. Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium. Corros Sci. 2014;87:366–375.
  • Zhao P, Han X, Wang W, et al. Exfoliation inhibition on aluminum alloy 7075 by water-soluble phthalocyanine derivates in 1 mol/L HCl. J Adhes Sci Technol. 2020;34(12):1331–1347.
  • Quartarone G, Bonaldo L, Tortato C. Inhibitive action of indole-5-carboxylic acid towards corrosion of mild steel in deaerated 0.5 M sulfuric acid solutions. Appl Surf Sci. 2006;252:825–8257.
  • Derfouf H, Harek Y, Larabi L, et al. Corrosion inhibition activity of carbon steel in 1.0 M hydrochloric acid medium using Hammada scoparia extract: gravimetric and electrochemical study. J Adhes Sci Technol. 2019;33(8):808–833.
  • Hegazy MA. A novel Schiff base-based cationic gemini surfactants: synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid solution. Corros Sci. 2009;51(11):2610–2618.
  • Doner A, Solmaz R, Ozcan M, et al. Experimental and theoretical studies of thiazoles as corrosion inhibitors for mild steel in sulphuric acid solution. Corros Sci. 2011;53(9):2902–2913.
  • El Achouri M, Kertit S, Gouttaya HM, et al. Corrosion inhibition of iron in 1M HCl by some gemini surfactants in the series of alkanediyl-bis-(dimethyl tetradecyl ammonium bromide). Prog Org Coat. 2001;43(4):267–273.
  • Solmaz R, Kardaş G, Yazıcı B, et al. The Rhodanine inhibition effect on the corrosion of a mild steel in acid along the exposure time. Prot Met. 2007;43(5):476–482.
  • El Mehdi B, Mernari B, Traisnel M, et al. Synthesis and comparative study of the inhibitive effect of some new triazole derivatives towards corrosion of mild steel in hydrochloric acid solution. Mater Chem Phys. 2003;77(2):489–496.
  • Bentiss F, Bouanis M, Mernari B, et al. Understanding the adsorption of 4 H -1,2,4-triazole derivatives on mild steel surface in molar hydrochloric acid. Appl Surf Sci. 2007;253(7):3696–3704.
  • El Bribri A, Tabyaoui M, Tabyaoui B, et al. The use of Euphorbia falcata extract as eco-friendly corrosion inhibitor of carbon steel in hydrochloric acid solution. Mater Chem Phys. 2013;141(1):240–247.
  • Boucherit L, Al-Noaimi M, Daoud D, et al. Synthesis, characterization and the inhibition activity of 3-(4- cyanophenylazo)-2,4-pentanedione (L) on the corrosion of carbon steel, synergistic effect with other halide ions in 0.5 MH2SO4. J Mol Struct. 2019;1177:371–380.
  • Lorenz WJ, Mansfeld F. Determination of corrosion rates by electrochemical DC and AC methods. Corros Sci. 1981;21:467–672.
  • Paskossy T. Impedance of rough capacitive electrodes. J Electroanal Chem. 1994;364:111–125.
  • Juttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochim Acta. 1990;35:1501–1508.
  • Quan Z, Wu X, Chen S, et al. Self-assembled monolayers of Schiff bases on copper surfaces. Corros Sci. 2001;57(3):195–201.
  • Solmaz R. Investigation of adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by 5-(4-Dimethylaminobenzylidene) rhodanine. Corros Sci. 2014;79:169–176.
  • Goulart CM, Esteves-Souza A, Martinez-Huitle CA, et al. Experimental and the-oretical evaluation of semicarbazones and thiosemicarbazones asorganic corrosion inhibitors. Corros Sci. 2013;67:281–291.
  • Muralidharan S, Phani KLN, Pitchumani S, et al. Polyamino‐benzoquinone polymers: a new class of corrosion inhibitors for mild steel. J Electrochem Soc. 2019;142(5):1478–1483.
  • Ben Hmamou D, Salghi R, Zarrouk A, et al. Carob seed oil: an efficient inhibitor of C38 steel corrosion in hydrochloric acid. Inter J Indus Chem. 2012;3:1–9.
  • Popova A, Sokolova E, Raicheva S, et al. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives. Corros Sci. 2003;45(1):33–58.
  • Bommersbach P, Dumont-Alemany C, Millet JP, et al. Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods. Elec Chim Acta. 2005;51(6):1076–1084.
  • Gomma GK. Mechanism of corrosion behaviour of carbon steel in tartaric and malic acid in the presence of Fe+2 ions. Mat Chem Phys. 1998;52(3):200–206.
  • Schorr M, Yahalom J. The significance of the energy of activation for the dissolution reaction of metal in acids. Corros Sci. 1972;12(11):867–868.
  • Srimathi M, Rajalakshmi R, Subhashini S. Polyvinyl alcohol–sulphanilic acid water soluble composite as corrosion inhibitor for mild steel in hydrochloric acid medium. Arab J Chem. 2014;7(5):647–656.
  • Xu B, Yang W, Liu Y, et al. Experimental and theoretical evaluation of two pyridinecarboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros Sci. 2014;78:260–268.
  • El-Awady AA, Abd-El-Nabey BA, Aziz SG. Kinetic thermodynamic and adsorption isotherms analyses for the inhibition of the acid corrosion of steel by cyclic and open chain amines. J Electrochem Soc. 2019;139(8):2149–2154.
  • Jo’M B, Reddy AKN. Modern electrochemistry. vol. 2. New York (NY): Plenum Publishing Corporation; 1976.
  • Wang X, Yang H, Wang F. A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions. Corros Sci. 2010;52(4):1268–1276.
  • Messaoudi H, Djazi F, Litim M, et al. Surface analysis and adsorption behavior of caffeine as an environmentally friendly corrosion inhibitor at the copper/aqueous chloride solution interface. J Adhes Sci Technol. 2020; https://doi.org/10.1080/01694243.2020.1756156.
  • Ebenso EE, Obot IB, Murulana LC. Quinoline and its derivatives as effective corrosion inhibitors for mild steel in acidic medium. Int J Electrochem Sci. 2010;5:1574–1586.
  • Migahed MA. Electrochemical investigation of the corrosion behaviour of mild steel in 2M HCl solution in presence of 1-dodecyl-4-methoxy pyridinium bromide. Mater Chem Phys. 2005;93(1):48–53.
  • Wang X, Yang H, Wang F. An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in different concentration HCl solutions. Corros Sci. 2011;53(1):113–121.
  • Chafiq M, Chaouiki A, Lgaz H, et al. Synthesis and corrosion inhibition evaluation of a new Schiff base hydrazone for mild steel corrosion in HCl medium: electrochemical, DFT, and molecular dynamics simulations studies. J Adhes Sci Technol. 2020;34(12):1283–1314.
  • Cano E, Polo JL, La Iglesia A, et al. A study on the adsorption of benzotriazole on copper in hydrochloric acid using the inflection point of the isotherm. Adsorption. 2004;10(3):219–225.
  • Umoren SA, Obot IB, Ebenso EE, et al. Gum arabic as a potential corrosion inhibitor for aluminium in alkaline medium and its adsorption characteristics. Anti-Corrosion Meth Mater. 2006;53(5):277–282.
  • Smialowska ZS. The pitting corrosion of iron in sodium sulphate. Corros Sci. 1978;18:97–101.
  • Li X, Deng S, Fu H. Triazolyl blue tetrazolium bromide as a novel corrosion inhibitor for steel in HCl and H2SO4 solutions. Corros Sci. 2011;53(1):302–309.
  • Daoud D, Douadi T, Hamani H, et al. Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: experimental and computational study. Corros Sci. 2015;94:21–37.
  • Durnie W, Marco RD, Jefferson A, et al. Development of a structure - activity relationship for oil field corrosion inhibitors. J Electrochem Soc. 1999;146(5):1751–1756.
  • Gomma MK, Wahdan MH. Schiff bases as corrosion inhibitors for aluminium in hydrochloric acid solution. Mater Chem Phys. 1995;39(3):209–213.
  • Li X, Deng S, Fu H. Synergism between red tetrazolium and uracil on the corrosion of cold rolled steel in H2SO4 solution. Corros Sci. 2009;51(6):1344–1355.
  • Li X, Deng S, Fu H. Synergistic inhibition effect of 6-benzylaminopurine and iodide ion on the corrosion of cold rolled steel in H3PO4 solution. Corros Sci. 2011;53(11):3704–3711.
  • Hameed RSA. Aminolysis of polyethylene terephthalate waste as corrosion inhibitor for carbon steel in HCl corrosive medium. Adv Appl Sci Res. 2011;2:483–499.
  • El-Tabei AS, Hegazy MA. A corrosion inhibition study of a novel synthesized gemini nonionic surfactant for carbon steel in 1 M HCl solution. J Surfact Deterg. 2013;16(5):757–766.
  • Hegazy MA, Zaky MF. Inhibition effect of novel nonionic surfactants on the corrosion of carbon steel in acidic medium. Corros Sci. 2010;52(4):1333–1341.
  • Fekry AM, Mohamed RR. Acetyl thiourea chitosan as an eco-friendly inhibitor for mild steel in sulphuric acid medium. Electrochim Acta. 2010;55(6):1933–1939.
  • Li X, Deng S, Fu H. Inhibition of the corrosion of steel in HCl, H2SO4 solutions by bamboo leaf extract. Corros Sci. 2012;62:163–175.
  • Ekanem UF, Umoren SA, Udousoro II, et al. Inhibition of mild steel corrosion in HCl using pineapple leaves (Ananas comosus L.) extract. J Mater Sci. 2010;45(20):5558–5566.
  • Noor EA. Temperature effects on the corrosion inhibition of mild steel in acidic solutions by aqueous extract of fenugreek leaves. Int J Electrochem Sci. 2007;2:996–1017.
  • Zerga B, Attayibat A, Sfaira M, et al. Effect of some tripodal bipyrazolic compounds on C38 steel corrosion in hydrochloric acid solution. J Appl Electrochem. 2010;40(9):1575–1582.
  • Noor EA, Al-Moubaraki AH. Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4[4′(-X)-styryl pyridinium iodides/hydrochloric acid systems. Mater Chem Phys. 2008;110(1):145–154.
  • Gewirth AA, Niece BK. Electrochemical applications of in situ scanning probe microscopy. Chem Rev. 1997;97(4):1129–1162.
  • Li X, Deng S, Fu H, et al. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of steel in H2SO4 solution: weight loss, electrochemical, UV–vis, FTIR, XPS, and AFM approaches. Appl Surf Sci. 2008;254(17):5574–5586.
  • Li X, Deng S, Mu G, et al. Inhibition effect of nonionic surfactant on the corrosion of cold rolled steel in hydrochloric acid. Corros Sci. 2008;50(2):420–430.
  • Li X, Mu G. Tween-40 as corrosion inhibitor for cold rolled steel in sulphuric acid: weight loss study, electrochemical characterization and AFM. Appl Surf Sci. 2005;252(5):1254–1265.
  • Khaled KF. Electrochemical investigation and modeling of corrosion inhibition of aluminum in molar nitric acid using some sulphur-containing amines. Corros Sci. 2010;52(9):2905–2916.
  • Herrag L, Hammouti B, Elkadiri S, et al. Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: experimental and theoretical investigations. Corros Sci. 2010;52(9):3042–3051.
  • Obot IB, Obi-Egbed NO. Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: experimental and theoretical investigation. Corros Sci. 2010;52(1):198–204.
  • Daoud D, Douadi T, Ghobrini D, et al. Investigation of some phenolic-type antioxidants compounds extracted from biodiesel as green natural corrosion inhibitors; DFT and molecular dynamic simulation, comparative study. AIP Conf Proc. 2019;2190: 020098-1–020098-9; https://doi.org/10.1063/1.5138584.
  • Obot IB, Obi-Egbed NO, Umoren SA. The synergistic inhibitive effect and some quantum chemical parameters of 2, 3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium. Corros Sci. 2009;51(2):276–282.
  • Quraishi MA, Sardar R. Corrosion inhibition of mild steel in acid solutions by some aromatic oxadiazoles. Mater Chem Phys. 2003;78(2):425–431.
  • Gece G. The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci. 2008;50(11):2981–2992.
  • Mert BD, Erman Mert M, Kardaş G, et al. Experimental and theoretical investigation of 3-amino-1,2,4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium. Corros Sci. 2011;53(12):4265–4272.
  • Khaled KF, Babić-Samardžija K, Hackerman N. Theoretical study of the structural effects of polymethylene amines on corrosion inhibition of iron in acid solutions. Elect Chim Acta. 2005;50(12):2515–2520.
  • Babić-Samardžija K, Khaled KF, Hackerman N. Investigation of the inhibiting action of O-, S- and N-dithiocarbamato (1,4,8,11-tetraazacyclotetradecane) cobalt(III) complexes on the corrosion of iron in HClO4 acid. Appl Surf Sci. 2005;240(1–4):327–340.
  • Finley HF, Hackerman N. Effect of adsorption of polar organic compounds on the reactivity of steel. J Electrochem Soc. 1960;107(4):259–263.
  • Bereket G, Hür E, Öğretir C. Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium. J Mol Struct (Theochem). 2002;578(1–3):79–88.
  • Wetterer SM, Lavrich DJ, Cummings T. Energetics and kinetics of the physisorption of hydrocarbons on Au (111). J Phys Chem B. 1998;46:266–275.
  • Mistry BM, Jauhari S. Corrosion inhibition of mild steel in 1N HCl solution by mercapto-quinoline Schiff base. Chem Eng Commun. 2014;201(7):961–981.
  • Musa AY, Kadhum AAH, Mohamad AB, et al. Experimental and theoretical study on the inhibition performance of triazole compounds for mild steel corrosion. Corros Sci. 2010;52(10):3331–3340.,
  • Saha SK, Ghosh P, Hens A, et al. Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. Physica E. 2015;66:332–341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.