538
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Polydimethylsiloxane (PDMS) microfluidic modifications for cell-based immunofluorescence assay

, , , ORCID Icon, ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 955-972 | Received 09 May 2020, Accepted 29 Sep 2020, Published online: 12 Oct 2020

References

  • Lee SK, Lee ST. The laboratory diagnosis of autoimmune encephalitis. J Epilepsy Res. 2016;6(2):45–50.
  • Ogric M, Tercelj M, Praprotnik S, et al. Detection of adalimumab and anti-adalimumab antibodies in patients with rheumatoid arthritis: a comprehensive overview of methodology pitfalls and benefits. Immunol Res. 2017;65(1):172–185.
  • Sun N, Zhou C, Zhou X, et al. Use of a rat basophil leukemia (RBL) cell-based immunological assay for allergen identification, clinical diagnosis of allergy, and identification of anti-allergy agents for use in immunotherapy. J Immunotoxicol. 2015;12(2):199–205.
  • Hematian A, Sadeghifard N, Mohebi R, et al. Traditional and modern cell culture in virus diagnosis. Osong Public Health Res Perspect. 2016;7(2):77–82.
  • Torino S, Corrado B, Iodice M, et al. PDMS-based microfluidic devices for cell culture. Inventions. 2018;3(3):65–14.
  • Xu D, Huang X, Guo J, et al. Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens Bioelectron. 2018;110:78–88.
  • Dong J, Ueda H. ELISA-type assays of trace biomarkers using microfluidic methods. Wiley Interdiscip Rev Nanomed. 2017;9:1–19.
  • Bhattacharya S, Singh RK, Mandal S, et al. Plasma modification of polymer surfaces and their utility in building biomedical microdevices. J Adhes Sci Technol. 2010;24(15–16):2707–2739.
  • Tsao CW. Polymer microfluidics: simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines. 2016;7(12):225–211.
  • Taguchi T, Arakaki A, Takeyama H, et al. Detection of cryptosporidium parvum oocysts using a microfluidic device equipped with the SUS micromesh and FITC-labeled antibody. Biotechnol Bioeng. 2007;96(2):272–280.
  • Zhang H, Chiao M. Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J Med Biol Eng. 2015;35(2):143–155.
  • Gokaltun A, Yarmush ML, Asatekin A, et al. Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. Technology. 2017;5(1):1–12.
  • Zhou J, Ellis AV, Voelcker NH. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis. 2010;31(1):2–16.
  • Amoozgar B, Morarescu D, Sheardown H. Sulfadiazine modified PDMS as a model material with the potential for the mitigation of posterior capsule opacification (PCO). Colloids Surf B Biointerfaces. 2013;111:15–23.
  • Chuah YJ, Koh YT, Lim K, et al. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Sci Rep. 2015;5:18162–18112.
  • Kuddannaya S, Chuah YJ, Lee MH, et al. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. ACS Appl Mater Interfaces. 2013;5(19):9777–9784.
  • Qian Z, Ross D, Jia W, et al. Bioactive polydimethylsiloxane surface for optimal human mesenchymal stem cell sheet culture. Bioact Mater. 2018;3(2):167–173.
  • Trantidou T, Elani Y, Parsons E, et al. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsyst Nanoeng. 2017;3(1):9.
  • Valamehr B, Jonas SJ, Polleux J, et al. Hydrophobic surfaces for enhanced differentiation of embryonic stem cell-derived embryoid bodies. Proc Natl Acad Sci USA. 2008;105(38):14459–14464.
  • Wu MH. Simple poly(dimethylsiloxane) surface modification to control cell adhesion. Surf Interface Anal. 2009;41(1):11–16.
  • Liu VA, Jastromb WE, Bhatia SN. Engineering protein and cell adhesivity using PEO-terminated triblock polymers. J Biomed Mater Res. 2002;60(1):126–134.
  • Zhang W, Choi DS, Nguyen YH, et al. Studying cancer stem cell dynamics on PDMS surfaces for microfluidics device design. Sci Rep. 2013;3:2332–2338.
  • Chuah YJ, Kuddannaya S, Lee MH, et al. The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate. Biomater Sci. 2015;3(2):383–390.
  • Kuddannaya S, Bao J, Zhang Y. Enhanced in vitro biocompatibility of chemically modified poly(dimethylsiloxane) surfaces for stable adhesion and long-term investigation of brain cerebral cortex cells. ACS Appl Mater Interfaces. 2015;7(45):25529–25538.
  • Nishikawa M, Yamamoto T, Kojima N, et al. Stable immobilization of rat hepatocytes as hemispheroids onto collagen-conjugated poly-dimethylsiloxane (PDMS) surfaces: importance of direct oxygenation through PDMS for both formation and function. Biotechnol Bioeng. 2008;99(6):1472–1481.
  • Zuchowska A, Kwiatkowski P, Jastrzebska E, et al. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins. Electrophoresis. 2016;37(3):536–544.
  • Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with Image J. Biophotonics Intern. 2004;11:36–42.
  • Greivenkamp JE. Field guide to geometrical optics. Bellingham (WA): SPIE Press; 2004.
  • Gomathi N, Mishra I, Varma S, et al. Surface modification of poly(dimethylsiloxane) through oxygen and nitrogen plasma treatment to improve its characteristics towards biomedical applications. Surf Topogr-Metrol. 2015;3:3607–3619.
  • Sharma D, Jia W, Long F, et al. Polydopamine and collagen coated micro-grated polydimethylsiloxane for human mesenchymal stem cell culture. Bioact Mater. 2019;4:142–150.
  • Adly NY, Hassani H, Tran AQ, et al. Observation of chemically protected polydimethylsiloxane: towards crack-free PDMS. Soft Matter. 2017;13(37):6297–6303.
  • Xiong L, Chen P, Zhou Q. Adhesion promotion between PDMS and glass by oxygen plasma pre-treatment. J Adhes Sci Technol. 2014;28(11):1046–1054.
  • Malikov EY, Muradov MB, Akperov OH, et al. Synthesis and characterization of polyvinyl alcohol based multiwalled carbon nanotube nanocomposites. Physica E Low Dimens Syst Nanostruct. 2014;61:129–134.
  • Napaphak J, Thaned P, Ekapol L. Preparation and characterization of poly(vinyl alcohol)-poly(vinyl pyrrolidone) mucoadhesive buccal patches for delivery of lidocaine HCL. Int J App. Pharm. 2018;10:115–123.
  • Lin HR, Chang PC. Novel pluronic-chitosan micelle as an ocular delivery system. J Biomed Mater Res B Appl Biomater. 2013;101(5):689–699.
  • Dmitrenko ME, Penkova AV, Atta RR, et al. The development and study of novel membrane materials based on polyphenylene isophthalamide – pluronic F127 composite. Mater Des. 2019;165:1–13.
  • Su Yl, Wang J, Liu HZ. FTIR spectroscopic investigation of effects of temperature and concentration on PEO − PPO − PEO block copolymer properties in aqueous solutions. Macromolecules. 2002;35(16):6426–6431.
  • Rozenberg M, Shoham G. FTIR spectra of solid poly-l-lysine in the stretching NH mode range. Biophys Chem. 2007;125(1):166–171.
  • Khalili AA, Ahmad MR. A review of cell adhesion studies for biomedical and biological applications. Actuat B Chem. 2015;16:18149–18184.
  • Bodas D, Khan-Malek C. Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—an SEM investigation. Sensor Actuat B Chem. 2007;123(1):368–373.
  • Larson BJ, Gillmor SD, Braun JM, et al. Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments. Langmuir. 2013;29(42):12990–12996.
  • Yu L, Li CM, Zhou Q, et al. Poly(vinyl alcohol) functionalized poly(dimethylsiloxane) solid surface for immunoassay. Bioconjug Chem. 2007;18(2):281–284.
  • Camino G, Lomakin SM, Lazzari M. Polydimethylsiloxane thermal degradation part 1. Kinetic Aspects, Polym. 2001;42(6):2395–2402.
  • Tooley WW, Feghhi S, Han SJ, et al. Thermal fracture of oxidized polydimethylsiloxane during soft lithography of nanopost arrays. J Micromech Microeng. 2011;21(5):054013.
  • Ardhaoui M, Naciri M, Mullen T, et al. Evaluation of cell behaviour on atmospheric plasma deposited siloxane and fluorosiloxane coatings. J Adhes Sci Technol. 2010;24(5):889–903.
  • Yu M, Strohmeyer N, Wang J, et al. Increasing throughput of AFM-based single cell adhesion measurements through multisubstrate surfaces. Beilstein J Nanotechnol. 2015;6:157–166.
  • Xiaojing S, Edmond WKY, Heather ASU, et al. Microfluidic cell culture and its application in high-throughput drug screening: cardiotoxicity assay for hERG channels. J Biomol Screen. 2010;16:101–111.
  • Yin H, Marshall D. Microfluidics for single cell analysis. Curr Opin Biotechnol. 2012;23(1):110–119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.