150
Views
1
CrossRef citations to date
0
Altmetric
Articles

A novel energy-based model for predicting the fatigue life of the automobile sealant adhesively bonded butt joints

, , &
Pages 1860-1879 | Received 05 Oct 2020, Accepted 06 Dec 2020, Published online: 21 Dec 2020

References

  • Jairaja R, Naik GN. Strengthening of the adhesive bond using a mixture of adhesives between dissimilar adherends in a single lap joint. J Adhes Sci Technol. 2020;34(6):579–598.
  • Back JH, Baek D, Shin JH, et al. Resistance to cleavage of core-shell rubber/epoxy composite foam adhesive under impact wedge–peel condition for automobile structural adhesive. J Polymers. 2019;11(1):152.
  • He MM, Li N, Zhu CH, et al. Experimental investigation and damage modeling of salt rock subjected to fatigue loading. Int J Rock Mech Min Sci. 2019;114:17–23.
  • Ohguchi KI, Sasaki K. Investigation of effect of creep strain on low-cycle fatigue of lead-free solder by cyclic loading using stepped ramp waves. J Electron Pack. 2010;132(4):1113–1122.
  • Gomatam RR, Sancaktar E. A novel cumulative fatigue damage model for electronically-conductive adhesive joints under variable loading. J Adhes Sci Technol. 2006; 20(1):69–86.
  • Movahedi-Rad AV, Keller T, Vassilopoulos AP. Stress ratio effect on tension-tension fatigue behavior of angle-ply GFRP laminates. Int J Fatigue. 2019;126:103–111.
  • Yu Q, Zhang JX, Jiang YY, et al. Z. Effect of strain ratio on cyclic deformation and fatigue of extruded AZ61A magnesium alloy. Int J Fatigue. 2012;44:225–233.
  • Pereira AM, Ferreira JAM, Antunes FV, et al. Assessment of the fatigue life of aluminium spot-welded and weld-bonded joints. J Adhes Sci Technol. 2014;28(14–15):1432–1450.
  • Özdeş H, Tiryakioğlu M. On estimating high-cycle fatigue life of sast Al–Si–Mg–(Cu) alloys from tensile test results. Mater Sci Eng A. 2017;688:9–15.
  • Chen G, Liang HQ, Wang L, et al. Multiaxial ratcheting-fatigue interaction on acrylonitrile-butadiene-styrene terpolymer. Polym Eng Sci. 2015;55(3):664–671.
  • Happonen T, Ritvonen T, Korhonen P, et al. Modeling the lifetime of printed silver conductors in cyclic bending with the Coffin–Manson relation. IEEE Trans Device Mater Relib. 2016;16(1):25–29.
  • Kumar S, Pandey PC. Fatigue life prediction of adhesively bonded single lap joints. Int J Adhes Adhes. 2011;31(1):43–47.
  • Chang L, Ma TH, Zhou BB, et al. Comprehensive investigation of fatigue behavior and a new strain-life model for CP-Ti under different loading conditions. Int J Fatigue. 2019;129:105220.
  • Chang L, Wen JB, Zhou CY, et al. Uniaxial ratcheting behavior and fatigue life models of commercial pure titanium. Fatigue Fract Eng Mater Struct. 2018;41(9):2024–2039.
  • Liu Y, Kang G, Gao Q. Stress-based fatigue failure models for uniaxial ratchetting–fatigue interaction. Int J Fatigue. 2008;30(6):1065–1073.
  • Liu Y, Kang G, Gao Q. A multiaxial stress-based fatigue failure model considering ratchetting–fatigue interaction. Int J Fatigue. 2010;32(4):678–684.
  • Zhang J, Li HY, Li H, et al. Investigation on fatigue performance of adhesively bonded butt-joints and multiaxial life estimation using stress-based failure models. Theor Appl Fract Mech. 2020;107:102498.
  • Letcher T, Shen MHH, Scott-Emuakpor O, et al. An energy-based critical fatigue life prediction method for AL6061-T6. Fatigue Fracture Eng Mater Struct. 2012;35(9):861–870.
  • Sun YZ, Fang CZ, Wang JC, et al. Energy-based approach to predict fatigue life of asphalt mixture using three-point bending fatigue test. Materials. 2018;11(9):1696.
  • Koh SK. Fatigue damage evaluation of a high pressure tube steel using cyclic strain energy density. Int J Press Vessels Pip. 2002;79(12):791–798.
  • Abdalla JA, Hawileh RA, Oudah F, et al. Energy-based prediction of low-cycle fatigue life of BS 460B and BS B500B steel bars. Mater Design. 2009;30(10):4405–4413.
  • Ji DM, Zhang LC, Ren JX, et al. Creep-fatigue interaction and cyclic strain analysis in P92 steel based on test. J Mater Eng Perform. 2015;24(4):1441–1451.
  • Ji DM, Ren JX, Zhang LC. A novel creep-fatigue life prediction model for P92 steel on the basis of cyclic strain energy density. J Mater Eng Perform. 2016;25(11):4868–4874.
  • Wang X, Crupi V, Jiang C, et al. Energy-based approach for fatigue life prediction of pure copper. Int J Fatigue. 2017;104:243–250.
  • Kan QH, Kang GZ, Yan WY, et al. An energy-based fatigue failure model for super-elastic NiTi alloys under pure mechanical cyclic loading. Proc SPIE. 2012;8409:84090F.
  • Song D, Kang GZ, Kan QH, et al. Effects of peak stress and stress amplitude on multiaxial transformation ratchetting and fatigue life of superelastic NiTi SMA micro-tubes: experiments and life-prediction model. Int J Fatigue. 2017;96:252–260.
  • Park SH, Hong SG, Lee BH, et al. Low-cycle fatigue characteristics of rolled Mg–3Al–1Zn alloy Int J Fatigue. 2010;32(11):1835–1842.
  • Mahtabi MJ, Shamsaei N. A modified energy-based approach for fatigue life prediction of superelastic NiTi in presence of tensile mean strain and stress. Int J Mech Sci. 2016;117:321–333.
  • Shrestha R, Simsiriwong J, Shamsaei N. Fatigue modeling for a thermoplastic polymer under mean strain and variable amplitude loadings. Int J Fatigue. 2017;100:429–443.
  • Shrestha R, Simsiriwong J, Shamsaei N, et al. Cyclic deformation and fatigue behavior of polyether ether ketone (PEEK). Int J Fatigue. 2016;82:411–427.
  • Zhang J, Li HY, Jia H, et al. Experimental investigation on multiaxial ratchetting behaviour and fatigue life of silicone seal adhesive bonding butt-joints. Int J Adhes Adhes. 2020;103:102700.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.