586
Views
28
CrossRef citations to date
0
Altmetric
Review Article

Two decades of friction stir processing–a review of advancements in composite fabrication

ORCID Icon, , &
Pages 795-832 | Received 05 Feb 2021, Accepted 01 Jun 2021, Published online: 11 Jun 2021

References

  • Butola R, Singari RM, Murtaza Q. Mechanical and wear behaviour of Friction stir processed surface composite through self-assembled monolayer technique. Surf Topogr Metrol Prop. 2020;8(4):045007.
  • Tyagi L, Butola R, Jha AK. Mechanical and tribological properties of AA7075-T6 metal matrix composite reinforced with ceramic particles and aloevera ash via Friction stir processing. Mater Res Express. 2020;7(6):066526.
  • Mishra RS, Bieler TR, Mukherjee AK. Superplasticity in powder metallurgy aluminum alloys and composites. Acta Metall Mater. 1995;43(3):877–891.
  • Dickman R, Wang J, Jensen I. Random sequential adsorption: series and virial expansions. J Chem Phys. 1991;94(12):8252–8257.
  • Butola R, Pratap C, Shukla A, et al. Effect on the mechanical properties of aluminum-based hybrid metal matrix composite using stir casting method. MSF. 2019;969:253–259.
  • Lianxi H, Erde W. Fabrication and mechanical properties of SiCw/ZK51A magnesium matrix composite by two-step squeeze casting. Mater Sci Eng A. 2000; 278(1–2):267–271.
  • Han B, Dunand D. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Mater Sci Eng A. 2000;277(1–2):297–304.
  • Mishra RS, Ma ZY, Charit I. Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A. 2003;341(1–2):307–310.
  • Morishige T, Tsujikawa M, Hino M, et al. Microstructural modification of cast Mg alloys by friction stir processing. Int J Cast Metals Res. 2008; 21(1–4):109–113.
  • Sun N, Apelian D. Friction stir processing of aluminum cast alloys for high performance applications. JOM-J Min Met Mats. 2011;63(11):44–50.
  • Chaudhary A, Dev AD, Goel A, et al. The mechanical properties of different alloys in friction stir processing: a review. Mater Today Proc. 2018;5(2):5553–5562.
  • Ma ZY, Mishra RS, Mahoney MW, et al. High strain rate superplasticity in friction stir processed Al–Mg–Zr alloy. Mater Sci Eng A. 2003;351(1–2):148–153.
  • Kwon Y. Mechanical properties of fine-grained aluminum alloy produced by friction stir process. Scr Mater. 2003;49(8):785–789.
  • Madhusudhan Reddy G, Sambasiva Rao A, Srinivasa Rao K. Friction stir processing for enhancement of wear resistance of ZM21 magnesium alloy. Trans Indian Inst Met. 2013;66(1):13–24.
  • Prakash T, Sivasankaran S, Sasikumar P. Mechanical and tribological behaviour of friction-stir-processed Al 6061 aluminum sheet metal reinforced with Al2O3/0.5 gr hybrid surface nanocomposite. Arab J Sci Eng. 2015;40(2):559–569.
  • Ghasemi-Kahrizsangi A, Kashani-Bozorg SF, Moshref-Javadi M, et al. Friction stir processing of mild steel/Al2O3 nanocomposite: modeling and experimental studies. Metallogr Microstruct Anal. 2015;4(2):122–130.
  • Chen YC, Nakata K. Evaluation of microstructure and mechanical properties in friction stir processed SKD61 tool steel. Mater Charact. 2009;60(12):1471–1475.
  • Morisada Y, Fujii H, Mizuno T, et al. Nanostructured tool steel fabricated by combination of laser melting and friction stir processing. Mater Sci Eng A. 2009;505(1–2):157–162.
  • Nagaoka T, Kimoto Y, Watanabe H, et al. Friction stir processing of a D2 tool steel layer fabricated by laser cladding. Mater Des. 2015;83:224–229.
  • Zinati RF, Razfar MR. Finite element simulation and experimental investigation of friction stir processing of polyamide 6. Proc Inst Mech Eng B J Eng Manuf. 2015;229(12):2205–2215.
  • Clyne TW, Withers PJ. An introduction to metal matrix composites. Cambridge: Cambridge University Press; 1993.
  • Chawla KK. Metal matrix composites. In: Composite materials. New York, NY: Springer; 2012.
  • Benjamin JS. Dispersion strengthened superalloys by mechanical alloying. Metall Trans. 1970;1(10):2943–2951.
  • El-Danaf EA, El-Rayes MM, Soliman MS. Friction stir processing: an effective technique to refine grain structure and enhance ductility. Mater Des. 2010;31(3):1231–1236.
  • Sharma V, Prakash U, Kumar BVM. Surface composites by friction stir processing: a review. J Mater Process Technol. 2015;224:117–134.
  • Chen C-F, Kao P-W, Chang L, et al. Mechanical properties of nano metric Al2O3 particulate-reinforced Al–Al11Ce3 composites produced by friction stir processing. Mater Trans. 2010;51(5):933–938.
  • Shahraki S, Khorasani S, Abdi Behnagh R, et al. Producing of AA5083/ZrO2 nanocomposite by friction stir processing (FSP). Metall Materi Trans B. 2013;44(6):1546–1553.
  • Bauri R, Yadav D, Suhas G. Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite. Mater Sci Eng A. 2011;528(13–14):4732–4739.
  • Zhang Q, Xiao BL, Wang QZ, et al. In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al–TiO2 system. Mater Lett. 2011;65(13):2070–2072.
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: in-situ formation of an Al3Ti-reinforced nanocomposite and materials characterization. Mater Charact. 2015;108:102–114.
  • Rajan HBM, Dinaharan I, Ramabalan S, et al. Influence of friction stir processing on microstructure and properties of AA7075/TiB2 in situ composite. J Alloys Compd. 2016;657:250–260.
  • Mironov S, Sato YS, Kokawa H. Grain structure evolution during friction-stir welding. Phys Mesomech. 2020;23(1):21–31.
  • Morisada Y, Fujii H, Nagaoka T, et al. Fullerene. A5083 composites fabricated by material flow during friction stir processing. Compos A Appl Sci Manuf. 2007;38(10):2097–2101.
  • Huang C, Li W, Zhang Z, et al. Modification of a cold sprayed SiC p/Al5056 composite coating by friction stir processing. Surf Coat Technol. 2016;296:69–75.
  • Zahmatkesh B, Enayati MH. A novel approach for development of surface nanocomposite by friction stir processing. Mater Sci Eng A. 2010;527(24–25):6734–6740.
  • Węglowski MS. Friction stir processing – state of the art. Arch Civil Mech Eng. 2018;18(1):114–129.
  • Akbari M, Asadi P, Givi MKB, et al. A cellular automaton model for microstructural simulation of friction stir welded AZ91 magnesium alloy. Modell Simul Mater Sci Eng. 2016;24(3):035012.
  • Hattingh DG, Blignault C, van Niekerk TI, et al. Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool. J Mater Process Technol. 2008;203(1–3):46–57.
  • Astarita A, Squillace A, Carrino L. Experimental study of the forces acting on the tool in the friction-stir welding of AA 2024 T3 sheets. J Mater Eng Perform. 2014;23(10):3754–3761.
  • Moshwan R, Yusof F, Hassan MA, et al. Effect of tool rotational speed on force generation, microstructure and mechanical properties of friction stir welded Al-Mg-Cr-Mn (AA 5052-O) alloy. Mater Des. 2015;66(PA):118–128.
  • Mandal S, Rice J, Elmustafa AA. Experimental and numerical investigation of the plunge stage in friction stir welding. J Mater Process Technol. 2008;203(1–3):411–419.
  • Kumar R, Singh K, Pandey S. Process forces and heat input as function of process parameters in AA5083 friction stir welds. Trans Nonferr Met Soc China. 2012;22(2):288–298.
  • Su H, Wu CS, Pittner A, et al. Simultaneous measurement of tool torque, traverse force and axial force in friction stir welding. J Manuf Processes. 2013;15(4):495–500.
  • Mehta M, Chatterjee K, De A. Monitoring torque and traverse force in friction stir welding from input electrical signatures of driving motors. Sci Technol Weld Joining. 2013;18(3):191–197.
  • Padmanaban G, Balasubramanian V. Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy-an experimental approach. Mater Des. 2009;30(7):2647–2656.
  • Woo W, Choo H, Brown DW, et al. Deconvoluting the influence of heat and plastic deformation on internal strain generated by friction stir processing. Appl Phys Lett. 2005;86(23):231902–231904.
  • Schmidt H, Hattel J, Wert J. An analytical model for the heat generation in friction stir welding. Modell Simul Mater Sci Eng. 2004;12(1):143–157.
  • Arora KS, Pandey S, Schaper M, et al. Effect of process parameters on friction stir welding of aluminum alloy 2219-T87. Int J Adv Manuf Technol. 2010;50(9–12):941–952.
  • Trimble D, Monaghan J, O’Donnell GE, et al. Force generation during friction stir welding of AA2024-T3. CIRP Ann Manuf Technol. 2012;61(1):9–12.
  • Arora A, De A, DebRoy T. Toward optimum friction stir welding tool shoulder diameter. Scr Mater. 2011;64(1):9–12.
  • Khairuddin JT, Abdullah J. Principles and thermo mechanical model of friction stir welding. In: Kovacevic R, editor. Welding processes. London: InTech; 2012.
  • Arora A, Nandan R, Reynolds AP, et al. DebRoy, Torque, power requirement and stir zone geometry in friction stir welding through modelling and experiments. Scr Mater. 2009;60(1):13–16.
  • Hamilton C, Węglowski MS, Dymek S. A simulation of friction stir processing for temperature and material flow. Metall Materi Trans B. 2015;46(3):1409–1418.
  • Węglowski MST, Dymek S. Microstructural modification of cast aluminum alloy AlSi9Mg via friction modified processing. Arch Metall Mater. 2012;57(1):71–78.
  • Yang M, Xu C, Wu C, et al. Fabrication of AA6061/Al2O3 nano ceramic particle reinforced composite coating by using friction stir processing. J Mater Sci. 2010;45(16):4431–4438.
  • Sharma A, Sharma VM, Mewar S, et al. Friction stir processing of Al6061-SiC-graphite hybrid surface composites. Mater Manuf Processes. 2018;33(7):795–804.
  • Elangovan K, Balasubramanian V. Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminum alloy. Mater Des. 2008;29(2):362–373.
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50(1–2):1–78.
  • Gupta MK. Effects of tool profile on mechanical properties of aluminium alloy Al 1120 friction stir welds. J Adhes Sci Technol. 2020;34(18):2000–2010.
  • Yu Z, Zhang W, Choo H, et al. Transient heat and material flow modeling of friction stir processing of magnesium alloy using threaded tool. Metall Mat Trans A. 2012;43(2):724–737.
  • Prado R. Tool wear in the friction-stir welding of aluminum alloy 6061 + 20Al2O3: a preliminary study. Scr Mater. 2001;1(45):75–80.
  • Elangovan K, Balasubramanian V, Valliappan M. Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061aluminum alloy. Int J Adv Manuf Technol. 2008;38(3–4):285–295.
  • Mahmoud ERI, Takahashi M, Shibayanagi T, et al. Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminum surface. Sci Technol Weld. 2009;14(5):413–425.
  • Faraji G, Dastani O, Mousavi SAAA. Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP. J Mater Eng Perform. 2011;20(9):1583–1590.
  • Rai R, De A, Bhadeshia HKDH, et al. Review: friction stir welding tools. Sci Technol Weld. 2011;16(4):325–342.
  • Hasan AF, Bennett CJ, Shipway PH, et al. A numerical methodology for predicting tool wear in friction stir welding. J Mater Process Technol. 2017;241:129–140.
  • Suthar J, Narayan D, Salvi RK. Effect on welding parameters on FSW of aluminum alloys 7075 T6 with varying tool geometry. J Prod Res Manag. 2018;7(3):27–32.
  • Ashish B, Saini J, Sharma B. A review of tool wear prediction during friction stir welding of aluminum matrix composite. Trans Nonferrous Met Soc China. 2016;26(8):2003–2018.
  • Hajideh MR, et al. Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets. J Manuf Process. 2017;26:269–279.
  • Hajideh MR, Farahani M, Ramezani NM. Reinforced dissimilar friction stir weld of polypropylene to acrylonitrile butadiene styrene with copper nano powder. J Manuf Process. 2018;32:445–454.
  • Molla Ramezani N, Davoodi B, Aberoumand M, et al. Assessment of tool wear and mechanical properties of Al 7075 nanocomposite in friction stir processing (FSP). J Braz Soc Mech Sci Eng. 2019;41(4):182.
  • Joshi S, Chandra R, Chaudhary R. Effect of friction stir processing (FSP) on the wear behavior of cast AS21A magnesium alloy. Surf Rev Lett. 2021;28(01):2050037..
  • Frigaard Ø, Grong Ø, Midling OT. A process model for friction stir welding of age hardening aluminum alloys. Metall Mat Trans A. 2001;32(5):1189–1200.
  • Arbegast WJ, Hartley PJ. Friction stir weld technology development at Lockheed martin michoud space system-an overview. In: Vitek JM, Johnson JA, editors. Proceedings of the fifth international conference on trends in welding research, June 1–5, 1998. Pine Mountain, GA, USA, p. 541–546.
  • Chen CM, Kovacevic R. Finite element modeling of friction stir welding thermal and thermomechanical analysis. Int J MachTool Manuf. 2003;43(13):1319–1326.
  • Dolatkhah A, Golbabaei P, Givi MKB, et al. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater Des. 2012;37:458–464.
  • Morisada Y, Fujii H, Nagaoka T, et al. MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A. 2006;419(1–2):344–348.
  • Lim DK, Shibayanagi T, Gerlich AP. Synthesis of multi-walled CNT reinforced aluminum alloy composite via friction stir processing. Mater Sci Eng A. 2009;507(1–2):194–199.
  • Asadi P, Faraji G, Besharati MK. Producing of AZ91/SiC composite by friction stir processing. Int J Adv Manuf Technol. 2010;51(1–4):247–260.
  • Devaraju A, Kumar A, Kotiveerachari B. Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing. Mater Des. 2013;45:576–585.
  • Olga VF. Microstrucural issues in a friction stir welded aluminum alloys. Scripta Mater. 1998;38(5):703–708.
  • Khayyamin D, Mostafapour A, Keshmiri R. The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP. Mater Sci Eng A. 2013;559:217–221.
  • Barmouz M, Givi MKB, Seyfi J. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure, microhardness, wear and tensile behavior. Mater Charact. 2011;62(1):108–117.
  • Wang W, Shi Q, Liu P, et al. A novel way to produce bulk SiCp reinforced aluminum metal matrix compo- sites by friction stir processing. J Mater Process Technol. 2009;209(4):2099–2103.
  • Vigneshkumar M, Padmanaban G, Balasubramanian V. Influence of tool tilt angle on the formation of friction stir processing zone in cast magnesium alloy ZK60/SiCp surface composites. Metallogr Microstruct Anal. 2019;8(1):58–66.
  • Rejil CM, Dinaharan I, Vijay SJ, et al. Microstructure and sliding wear behavior of AA6360/(TiC + B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate. Mater Sci Eng A. 2012;552:336–344.
  • Sato YS, Yamanoi H, Kokawa H, et al. Microstructural evolution of ultrahigh carbon steel during friction stir welding. Scr Mater. 2007;57(6):557–560.
  • Heidarzadeh A, Taghizadeh B, Mohammadzadeh A. Microstructure and mechanical properties of CuZn-Al2O3 nanocomposites produced by friction stir processing. Arch Civil Mech Eng. 2020;20:9.
  • Mironov S, Sato YS, Kokawa H. Microstructural evolution during friction stir-processing of pure iron. Acta Mater. 2008;56(11):2602–2614.
  • Johannes LB, Mishra RS. Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum. Mater Sci Eng A. 2007;464(1–2):255–260.
  • Liu XC, Sun YF, Morisada Y, et al. Dynamics of rotational flow in friction stir welding of aluminium alloys. J Mater Process Technol. 2018;252:643–651.
  • Freeney TA, Mishra RS. Effect of friction stir processing on microstructure and mechanical properties of a cast-magnesium–rare earth alloy. Metall Mat Trans A. 2010;41(1):73–84.
  • Paidar M, Ojo OO, Ezatpour HR, et al. Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B4C composite fabricated by accumulative roll bonding (ARB). Surf Coatings Technol. 2019;361:159–169.
  • Al-Ghamdi KA, Hussain G, Hashemi R. Fabrication of metal-matrix AL7075T651/TiN nano composite employing friction stir process. Proc Inst Mech Eng B J Eng Manuf. 2017;231(8):1319–1331.
  • Liu K, Nene SS, Frank M, et al. Effect of strain rate on deformation response of metastable high entropy alloys upon friction stir processing. Metall Mater Trans A. 2020;51(10):5043–5048.
  • John Baruch L, Raju R, Balasubramanian V, et al. Influence of multi-pass friction stir processing on microstructure and mechanical properties of die cast Al–7Si–3Cu aluminum alloy. Acta Metall Sin (Engl Lett). 2016;29(5):431–440.
  • Rayes MME, Danaf EAE. The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082. J Mater Process Technol. 2012;212:1157–1168.
  • Lee C, Huang J, Hsieh P. Mg based nano-composites fabricated by friction stir processing. Scripta Mater. 2006;54(7):1415–1420.
  • Cui GR, Ni DR, Ma ZY, et al. Effects of friction stir processing parameters and in situ passes on microstructure and tensile properties of Al-Si-Mg casting. Metall Mat Trans A. 2014;45(12):5318–5331.
  • Nascimento F, Santos T, Vilaça P, et al. Microstructural modification and ductility enhancement of surfaces modified by FSP in aluminum alloys. Mater Sci Eng A. 2009;506(1–2):16–22.
  • Ma ZY, Sharma SR, Mishra RS. Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing. Metall Mat Trans A. 2006;37(11):3323–3336.
  • Shafiei-Zarghani A, Kashani-Bozorg SF, Zarei-Hanzaki A. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater Sci Eng A. 2009;500(1–2):84–91.
  • Azizieh M, Kokabi AH, Abachi P. Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater Des. 2011;32(4):2034–2041.
  • Chang CI, Lee CJ, Huang JC. Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scr Mater. 2004;51(6):509–514.
  • Chabok A, Dehghani K. Effect of processing parameters on the mechanical properties of interstitial free steel subjected to friction stir processing. J Mater Eng Perform. 2013;22(5):1324–1330.
  • Hofmann DC, Vecchio KS. Submerged friction stir processing (SFSP): an improved method for creating ultra-fine-grained bulk materials. Mater Sci Eng A. 2005;402(1–2):234–241.
  • Imam M, Ueji R, Fujii H. Effect of online rapid cooling on microstructure and mechanical properties of friction stir welded medium carbon steel. J Mater Process Technol. 2016;230:62–71.
  • Asadi P, Givi MKB, Parvin N, et al. On the role of cooling and tool rotational direction on microstructure and mechanical properties of friction stir processed AZ91. Int J Adv Manuf Technol. 2012;63(9–12):987–997.
  • Liu XC, Sun YF, Fujii H. Clarification of microstructure evolution of aluminum during friction stir welding using liquid CO2 rapid cooling. Mater Des. 2017;129:151–163.
  • Manohar PA, Ferry M, Chand T. Five decades of the Zener equation. ISIJ Int. 1998;38(9):913–924. .
  • Rios PR. Overview no. 62. Acta Metall. 1987;35(12):2805–2814.
  • El-Kady O, Fathy A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des. 2014;54:348–353.
  • Thangarasu A, Murugan N, Dinaharan I, et al. Synthesis and characterization of titanium carbide particulate reinforced AA6082 aluminum alloy composites via friction stir processing. Arch Civil Mech Eng. 2015;15(2):324–334.
  • Sahraeinejad S, Izadi H, Haghshenas M, et al. Fabrication of metal matrix composites by friction stir processing with different Particles and processing parameters. Mater Sci Eng A. 2015;626(0):505–513.
  • Butola R, S RM, Murtaza Q. Fabrication and optimization of AA7075 matrix surface composites using Taguchi technique via friction stir processing (FSP). Eng Res Express. 2019;1(2):025015.
  • Patle H, Mahendiran P, Sunil BR, et al. Hardness and sliding wear characteristics of AA7075-T6 surface composites reinforced with B4C and MoS2 particles, Mater. Res Express. 2019;6:4108. .
  • Ghasemi-Kahrizsangi A, Kashani-Bozorg SF. Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing. Surf Coat Technol. 2012;209:15–22 25.
  • Heidarzadeh A, Taghizadeh B, Mohammadzadeh A. In-situ formation of Zn oxide particles in Cu Zn matrix during friction stir processing. J Adhes Sci Technol. 2021;35(9):1006–1013.
  • Ma ZY, Liu ZY, Xiao BL, et al. 2013. Fabrication of carbon nanotube reinforced aluminum matrix composites via friction stir processing. In: Mishra R, Mahoney MW, Sato Y, Hovanski Y, Verma R, editors. Friction stir welding and processing VII. Cham: Springer.
  • Joyson SA, Dinaharan I, Selvam JDR, et al. Microstructural characterization and tensile behavior of rutile (TiO2)-reinforced AA6063 aluminum matrix composites prepared by friction stir processing. Acta Metall Sin (Engl Lett). 2019;32(1):52–62.
  • Wang T, Gwalani B, Shukla S, et al. Development of in situ composites via reactive friction stir processing of Ti–B4C system. Compos B Eng. 2019;172:54–60.
  • Gupta MK. Effects of tool pin profile and feed rate on wear performance of pine leaf ash/Al composite prepared by friction stir processing. J Adhes Sci Technol. 2021;35(3):256–268.
  • Karpasand F, Ardestani M, Abbasi A. The effect of powder addition manner and volume fraction of reinforcement on tribological behavior of Al7075/B4C surface composite produced by friction stir processing. J Compos Mater. 2020;54(21):2873–2886.
  • Yuvaraj N, Aravindan S, Vipin  . Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization. J Mater Res Technol. 2015;4(4):398–410.
  • Asadi P, Faraji G, Masoumi A, et al. Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: effects of particle types and number of friction stir processing passes. Metall Mat Trans A. 2011;42(9):2820–2832.
  • Palanivel R, Dinaharan I, Laubscher RF, Paulo Davim J. Influence of boron nitride nanoparticles on microstructure and wear behavior of AA6082/TiB2 hybrid aluminum composites synthesized by friction stir processing. Mater Des. 2016;106:195–204. 15,
  • Raaft M, Mahmoud TS, Zakaria HM, et al. Microstructural, mechanical and wear behavior of A390/graphite and A390/Al2O3 surface composites fabricated using FSP. Mater Sci Eng A. 2011;528(18):5741–5746.
  • Mazaheri Y, Karimzadeh F, Enayati MH. Tribological behavior of A356/Al2O3 surface nanocomposite prepared by friction stir processing. Metall Mat Trans A. 2014;45(4):2250–2259.
  • Miranda RM, Santos TG, Gandra J, et al. Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminum alloys. J Mater Process Technol. 2013;213(9):1609–1615.
  • Morisada Y, Fujii H, Nagaoka T, et al. Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Mater Sci Eng A. 2006;433(1–2):50–54.
  • Dixit M, Newkirk JW, Mishra RS. Properties of friction stir-processed Al1100–NiTi composite. Scr Mater. 2007;56(6):541–544.
  • Gandra J, Miranda R, Vilaca P, et al. Producing functionally graded materials by friction stir processing. J Mater Process Technol. 2011;211(11):1659–1668.
  • Sharma A, Sharma VM, Sahoo B, et al. Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing. J Manuf Processes. 2019;37:53–70.
  • Rathee S, Maheshwari S, Siddiquee AN, et al. Distribution of reinforcement particles in surface composite fabrication via friction stir processing: suitable strategy. Mater Manuf Processes. 2018;33(3):262–269.
  • Butola R, Tyagi L, Singari R, et al. Mechanical and wear performance of Al/SiC surface composite prepared through friction stir processing. Mater Res Express. 2021;8(1):016520.
  • Rathee S, Maheshwari S, Siddiquee AN. Issues and strategies in composite fabrication via friction stir processing: a review. Mater Manuf Processes. 2018;33(3):239–261.
  • Zhang Z, Chen DL. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng A. 2008;483–484(0):148–152.
  • Lloyd DJ. Particle reinforced aluminum and magnesium matrix composites. Int Mater Rev. 1994;39(1):1–23.
  • Sato YS, Urata M, Kokawa H, et al. Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Mater Sci Eng A. 2003;354(1–2):298–305.
  • Heidarzadeh A, Paidar M, Güleryüz G, et al. Application of nanoindentation to evaluate the hardness and yield strength of brass joints produced by FSW: microstructural and strengthening mechanisms. Arch Civil Mech Eng. 2020;20:41.
  • Wang YN, Huang JC. Grain size dependence of yield strength in randomly textured Mg–Al–Zn alloy. Mater Trans. 2007;48(2):184–188.
  • Ferguson JB, Lopez H, Kongshaug D, et al. Revised orowan strengthening: effective interparticle spacing and strain eld considerations. Metall Mat Trans A. 2012;43(6):2110–2115. .
  • William J, Callister D. 1940. Materials science and engineering: an introduction. 7th ed. New York: John Wiley & Sons Inc.
  • Yuan W, Panigrahi SK, Su JQ, et al. Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy. Scr Mater. 2011;65(11):994–997.
  • Zhang Z, Chen DL. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr Mater. 2006;54(7):1321–1326.
  • Hassan SF, Tan MJ, Gupta M. High-temperature tensile properties of Mg/Al2O3 nanocomposite. Mater Sci Eng A. 2008;486(1–2):56–62.
  • Kapoor R, Kumar N, Mishra RS, et al. Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al–Mg alloy. Mater Sci Eng A. 2010;527(20):5246–5254.
  • Hoziefa W, Toschi S, Ahmed MMZ, et al. Influence of friction stir processing on the microstructure and mechanical properties of a compocast AA2024-Al2O3 nanocomposite. Mater Des. 2016;106:273–284.
  • Liu ZY, Xiao BL, Wang WG, et al. Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing. Carbon. 2014;69:264–274.
  • Khodabakhshi F, Gerlich AP, Simchi A, et al. Cryogenic friction-stir processing of ultra ne-grained Al–Mg–TiO2 nanocomposites. Mater Sci Eng A. 2015;620:471–482.
  • Guo JF, Liu J, Sun CN, et al. Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al. Mater Sci Eng A. 2014;602:143–149.
  • Khodabakhshi F, Gerlich AP, Simchi A, et al. Hot deformation behavior of an aluminum-matrix hybrid nanocomposite fabricated by friction stir processing. Mater Sci Eng A. 2015;626:458–466.
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Reactive friction stir processing of AA 5052–TiO2 nanocomposite: process–microstructure–mechanical characteristics. Mater Sci Technol. 2015;31(4):426–435.
  • Ma ZY. Friction stir processing technology: a review. Metall Mat Trans A. 2008;39(3):642–658.
  • Hayashi J, Menon S, Su J, et al. CHAPTER 3: material processing methods to enhance superplasticity-friction stir processing (FSP) of as-cast AA5083 for grain refinement and superplasticity. KEM. 2010;433:135–140.
  • Smith CB, Mohan A, Mishra RS, et al. Friction stir processing of commercial grade marine alloys to enable superplastic forming. KEM. 2010;433:141–151.
  • Maji P, Ghosh SK, Nath RK, et al. Microstructural, mechanical and wear characteristics of aluminum matrix composites fabricated by friction stir processing. J Braz Soc Mech Sci Eng. 2020;42(4):191.
  • Fujii H. Friction stir welding of steels. Weld Int. 2011;25(4):260–273.
  • Sato YS, Muraguchi M, Kokawa H. 2007. In: Mishra, RS, Mahoney, MW, Lienert, T, Jata, KV, editors. Friction stir welding and processing IV. Cham: Springer. p. 261–268.
  • Sato YS, Kokawa H, Enomoto M, et al. Microstructural evolution of 6063 aluminum during friction-stir welding. Metall Mat Trans A. 1999;30(9):2429–2437. .
  • Park SHC, Sato YS, Kokawa H. Microstructural evolution and its effect on Hall-Petch relationship in friction stir welding of thixomolded Mg alloy AZ91D. J Mater Sci. 2003;38(21):4379–4383.
  • Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Prog Mater Sci. 2021;117:100752.
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum- magnesium alloy. Mater Sci Eng A. 2015;642:215–229.
  • Tyagi L, Butola R, Kem L, et al. Comparative analysis of response surface methodology and artificial neural network on the wear properties of surface composite fabricated by friction stir processing. J Bio Tribo Corros. 2021;7(2):36.
  • Abdi Behnagh R, Besharati Givi MK, Akbari M. Mechanical properties, corrosion resistance, and microstructural changes during friction stir processing of 5083 aluminum rolled plates. Mater Manuf Processes. 2012;27(6):636–640.
  • Kumar N, Mishra RS, Dahotre NB, et al. Effect of friction stir processing on microstructure and mechanical properties of laser-processed Mg-4Y-3Nd alloy. Mater Des. 2016;110:663–675.
  • Sabbaghian M, Shamanian M, Akramifard HR, et al. Effect of friction stir processing on the microstructure and mechanical properties of Cu–TiC composite. Ceram Int. 2014;40(8):12969–12976.
  • Prado RA, Murr LE, Soto KF, et al. Self-optimization in tool wear for friction-stir welding of Al 6061 + 20% Al2O3 MMC. Mater Sci Eng A. 2003;349(1–2):156–165.
  • Legendre F, Poissonnet S, Bonnaillie P, et al. Some microstructural characterizations in a friction stir welded oxide dispersion strengthened ferritic steel alloy. J Nucl Mater. 2009;386–388:537–539.
  • Arbegast WJ. A flow-partitioned deformation zone model for defect formation during friction stir welding. Scripta Mater. 2008;58(5):372–376.
  • Nandan R, Debroy T, Bhadeshia H. Recent advances in friction-stir welding process, weldment structure and properties. Prog Mater Sci. 2008;53(6):980–1023.
  • Benjamin JS. Dispersion strengthened superalloys by mechanical alloying. Metal Trans. 1970;1(10):2943–2951.
  • Yuvaraj N, Aravindan S, Vipin  . Wear characteristics of Al5083 surface hybrid nano-composites by friction stir processing. Trans Indian Inst Met. 2017;70:1111–1129.
  • Eskandari H, Taheri R, Khodabakhshi F. Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nano-composite: microstructural developments and mechanical properties. Mater Sci Eng A. 2016;660:84–96.
  • Hardwick N. Use of additive friction stir in Mg alloys (powder and solid). In: 27th advanced aerospace materials and processes (Aero Mat) conference and exposition. Bellevue (WA): ASM; 2016. p. 23–26.
  • Azarsa E, Mostafapour A. On the feasibility of producing polymer–metal composites via novel variant of friction stir processing. J Manuf Processes. 2013;15(4):682–688.
  • Butola R, Murtaza Q, Singari RM. Formation of self-assembled monolayer and characterization of AA7075-T6/B4C nano-ceramic surface composite using friction stir processing. Surf Topogr: Metrol Prop. 2020;8(2):025030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.