628
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Thermoplastic silicone elastomers as materials exhibiting high mechanical properties and/or self-healing propensity

, , &
Pages 2723-2735 | Received 30 Apr 2021, Accepted 07 Jul 2021, Published online: 30 Jul 2021

References

  • Mazurek P, Vudayagiri S, Skov AL. How to tailor flexible silicone elastomers with mechanical integrity: a tutorial review. Chem Soc Rev. 2019;48(6):1448–1464.
  • Yilgör E, Yilgör I. Silicone containing copolymers: synthesis, properties and applications. Prog. Polym. Sci. 2014;39(6):1165–1195.
  • Yilgör I, Yilgör E, Wilkes GL. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review. Polymer. 2015; 58:A1–A36.
  • Yilgör E, Ekin Atilla G, Ekin A, et al. Isopropyl alcohol: an unusual, powerful, ‘green’ solvent for the preparation of silicone–urea copolymers with high urea contents. Polymer. 2003;44(26):7787–7793.
  • Yilgör E, Yilgör I. Hydrogen bonding: a critical parameter in designing silicone copolymers. Polymer. 2001;42:7953.
  • Riehle N, Athanasopulu K, Kutuzova L, et al. Influence of hard segment content and diisocyanate structure on the transparency and mechanical properties of poly(dimethylsiloxane)-based urea elastomers for biomedical applications. Polymers. 2021;13(2):212.
  • Yilgör I, Eynur T, Bilgin S, et al. Influence of soft segment molecular weight on the mechanical behavior of silicone-urea copolymers with low hard segment contents. Polymer. 2011;52(2):266–274.
  • Buckwalter DJ, Zhang M, Inglefield Jr DL, et al. Synthesis and characterization of siloxane containing poly(urea oxamide) segmented copolymers. Polymer. 2013;54(18):4849–4857.
  • (a) Sheth JP, Yilgör E, Erenturk B, et al. Structure-property behavior of poly(dimethylsiloxane) based segmented polyurea copolymers modified with poly(propylene oxide). Polymer. 2005;46(19):8185–8193; (b) Yilgör I, Yilgör E. Silicone-urea copolymers modified with polyethers. ACS Symp. Series. 2007;964:100.
  • (a) Fenouillot F, Méchin F, Boisson F, et al. Coarsening of nanodomains by reorganization of polysiloxane segments at high temperature in polyurethane/α,ω-aminopropyl polydimethylsiloxane blends. Eur Polym J. 2012;48(2):284–295.
  • Shearer G. Silicones in industrial applications. In: De Jaeger R, Gleria M, editors. Inorganic polymers. Nova Science Publishers: New York; 2007.
  • (a) Kang J, Son D, Nathan Wang G-J, et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv Mater. 2018;30(13):1706846; (b) Döhler D, Kang J, Cooper CB, et al. Tuning the self-healing response of poly(dimethylsiloxane)-based elastomers. ACS Appl Polym Mater. 2020;2(9):4127–4139.
  • Chen H, Koh JJ, Liu M, et al. Super tough and self-healable poly(dimethylsiloxane) elastomer via hydrogen bonding association and its applications as triboelectric nanogenerators. ACS Appl Mater Interfaces. 2020;12(28):31975–31983.
  • Simonin L, Falco G, Pensec S, et al. Macromolecular additives to turn a thermoplastic elastomer into a self-healing material. Macromolecules. 2021;54(2):888–895.
  • (a) Zhang A, Deng W, Lin Y, et al. Novel supramolecular elastomer films based on linear carboxyl-terminated polydimethylsiloxane oligomers: preparation, characterization, biocompatibility, and application in wound dressings. J Biomater Sci Polym Ed. 2014;25(13):1346–1361; (b) You Y, Zhang A, Lin Y. Crosslinking mechanism of supramolecular elastomers based on linear bifunctional polydimethylsiloxane oligomers. J Appl Polym Sci. 2016;133(18):n/a–n/a.
  • Cordier P, Tournilhac F, Soulié-Ziakovic C, et al. Self-healing and thermoreversible rubber from supramolecular assembly. Nature. 2008;451(7181):977–980.
  • (a) Sirrine JM, Schexnayder SA, Dennis JM, et al. Urea as a monomer for isocyanate-free synthesis of segmented poly(dimethyl siloxane) polyureas. Polymer. 2018;154:225–232; (b) Cao P-F, Li B, Hong T, et al. Superstretchable, self-healing polymeric elastomers with tunable properties. Adv Funct Mater. 2018;28(22):1800741.
  • Liu Y, Zhang K, Sun J, et al. A type of hydrogen bond cross-linked silicone rubber with the thermal-induced self-healing properties based on the nonisocyanate reaction. Ind Eng Chem Res. 2019;58(47):21452–21458.
  • (a) Sijbesma RP, Beijer FH, Brunsveld L, et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science. 1997;278(5343):1601–1604; (b) Hirschberg JHK, Beijer FH, van Aert HA, et al. Supramolecular polymers from linear telechelic siloxanes with quadruple-hydrogen-bonded units. Macromolecules. 1999;32(8):2696–2705.
  • (a) Colombani O, Barioz C, Bouteiller L, et al. Attempt toward 1D cross-linked thermoplastic elastomers: structure and mechanical properties of a new system. Macromolecules. 2005;38(5):1752–1759; (b) Lamers BAG, Ślęczkowski ML, Wouters F, et al. Tuning polymer properties of non-covalent crosslinked PDMS by varying supramolecular interaction strength. Polym Chem. 2020;11(16):2847–2854.
  • Ganachaud F, Portinha D, Fleury E, et al. Silicone materials, French Patent n°3078335, 2019.
  • Lu H, Feng S. Supramolecular silicone elastomers with healable and hydrophobic properties crosslinked by “salt-forming vulcanization. J Polym Sci Part A . 2017;55(5):903–911.
  • (a) Suriano R, Boumezgane O, Tonelli C, et al. Viscoelastic properties and self‐healing behavior in a family of supramolecular ionic blends from silicone functional oligomers. Polym Adv Technol. 2020;31(12):3247–3257; (b) Sun H, Liu X, Liu S, et al. Silicone dielectric elastomer with improved actuated strain at low electric field and high self-healing efficiency by constructing supramolecular network. Chem Eng J. 2020;384:123242.
  • Genest A, Portinha D, Fleury E, et al. The Aza-Michael reaction as an alternative strategy to generate advanced silicon-based (macro)molecules and materials. Prog Polym Sci. 2017;72:61–110.
  • (a) Ganachaud F, Fleury E, Portinha D, et al. Organopolysiloxanes and their preparation, French Patent n°3030536A1, 2016; (b) Genest A, Portinha D, Pouget E, et al. Zwitterionic silicone materials derived from Aza-Michael reaction of amino-functional PDMS with acrylic acid. Macromol Rapid Commun. 2021;42(5):2000372.
  • (a) Lei Y, Huang W, Huang Q, et al. A novel polysiloxane elastomer based on reversible aluminum-carboxylate coordination. New J Chem. (1)2019; 43:261–268; (b) Shi J, Zhao N, Yan D, et al. Design of a mechanically strong and highly stretchable thermoplastic silicone elastomer based on coulombic interactions. J Mater Chem A. 2020;8(12):5943–5951.
  • (a) Lu H, Hu Z, Wang D, et al. Self-recoverable dual-network silicon elastomer applied in cell adhesives. ACS Appl Polym Mater. 2019;1(11):2826–2832; (b) Bai L, Qv P, Zheng J. Colorless, transparent, and healable silicone elastomers by introducing Zn(II)–carboxylate interactions via aza-Michael reaction. J Mater Sci. 2020;55(28):14045–14057.
  • (a) Li C, Wang C, Keplinger C, et al. A highly stretchable autonomous self-healing elastomer. Nat Chem. 2016;8(6):618–624; (b) Chow C-F, Fujii S, Lehn J-M. Metallodynamers: neutral double-dynamic metallosupramolecular polymers. chem Asian J. 2008;3(8–9):1324–1335; (c) Jia X-Y, Mei J-F, Lai J-C, et al. A highly stretchable polymer that can be thermally healed at mild temperature. Macromol Rapid Commun. 2016;37(12):952–956; (d) Pignanelli J, Qian Z, Gu X, et al. Modulating the thermomechanical properties and self-healing efficiency of siloxane-based soft polymers through metal-ligand coordination. New J Chem. 2020;44(21):8977–8985.
  • Engle LP, Wagener KB. A review of thermally controlled covalent bond formation in polymer chemistry. J M S Rev Macromol Chem Phys. 1993;33(3):239–257.
  • (a) Zhang B, Zhang P, Zhang H, et al. A transparent, highly stretchable, autonomous self-healing poly(dimethylsiloxane) elastomer. Macromol Rapid Commun. 2017;38(15):1700110; (b) Li X, Yu R, Zhao T, et al. A self-healing polysiloxane elastomer based on siloxane equilibration synthesized through amino-ene Michael addition reaction. Eur Polym J. 2018;108:399–405; (c) Ishibashi JSA, Kalow JA. Vitrimeric silicone elastomers enabled by dynamic Meldrum’s acid derived cross-links. ACS Macro Lett. 2018;7(4):482–486; (d) Feng Z, Yu B, Hu J, et al. Multifunctional vitrimer-like polydimethylsiloxane (PDMS): recyclable, self-healable, and water-driven malleable covalent networks based on dynamic imine bond. Ind Eng Chem Res. 2019;58(3):1212–1221; (e) Wu Q, Xiong H, Peng Y, et al. Highly stretchable and self-healing “solid-liquid” elastomer with strain-rate sensing capability. ACS Appl Mater Interfaces. 2019;11(21):19534–19540.
  • (a) Roy N, Buhler E, Lehn J-M. Double dynamic self-healing polymers: supramolecular and covalent dynamic polymers based on the bis-iminocarbohydrazide motif. Polym Int. 2014;63(8):1400–1405; (b) Stukenbroeker T, Wang W, Winne JM, et al. Polydimethylsiloxane quenchable vitrimers. Polym Chem. 2017;8(43):6590–6593; (c) Zhang Y, Yuan L, Liang G, et al. Simultaneously achieving superior foldability, mechanical strength and toughness for transparent healable polysiloxane films through building hierarchical crosslinked networks and dual dynamic bonds. J Mater Chem A. 2018;6(46):23425–23434; (d) Wang Z, Gangarapu S, Escorihuela J, et al. Dynamic covalent urea bonds and their potential for development of self-healing polymer materials. J Mater Chem A. 2019;7(26):15933–15943; (e) Chen G, Sun Z, Wang Y, et al. Designed preparation of silicone protective materials with controlled self-healing and toughness properties. Prog Org Coat. 2020; 140:105483.
  • Wang Z, Lu X, Sun S, et al. Preparation, characterization and properties of intrinsic self-healing elastomers. J Mater Chem B. 2019;7(32):4876–4926.
  • Tyagi D, Yilgör I, Mc Grath JE, et al. Segmented organosiloxane copolymers: 2 thermal and mechanical properties of siloxane-urea copolymers. Polymer. 1984;25(12):1807–1816.
  • Spiesschaert Y, Guerre M, Imbernon L, et al. Filler reinforced polydimethylsiloxane-based vitrimers. Polymer. 2019;172:239–246.
  • Yi B, Wang S, Hou C, et al. Dynamic siloxane materials: from molecular engineering to emerging applications. Chem Eng J. 2021;405:127023.
  • Liu Z, Hong P, Huang Z, et al. Self-healing, reprocessing and 3D printing of transparent and hydrolysis-resistant silicone elastomers. Chem Eng J. 2020;387:124142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.