300
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Durable superamphiphobic cotton fabrics with improved ultraviolet radiation resistance and photocatalysis

, , , , , & show all
Pages 2176-2198 | Received 19 Jul 2021, Accepted 04 Nov 2021, Published online: 23 Nov 2021

References

  • Zhang D, Wu G, Li H, et al. Superamphiphobic surfaces with robust self-cleaning, abrasion resistance and anti-corrosion. Chem Eng J. 2021;406:126753.
  • Lee J, Hwang HS, Lo TNH, et al. Effect of silica size and content on superamphiphobic properties of silica-fluoropolymer core-shell coatings. Polymers. 2020;12(12):2864.
  • Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202(1):1–8.
  • Wang X, Long Y, Mu P, et al. Silicone oil infused slippery candle soot surface for corrosion inhibition with anti-fouling and self-healing properties. J Adhes Sci Technol. 2021;35(10):1057–1071.
  • Eriksson M, Swerin A. Forces at superhydrophobic and superamphiphobic surfaces. Curr Opin Colloid Interface Sci. 2020;47:46–57.
  • Gu W, Song K, Cheng Z, et al. Water-based robust transparent superamphiphobic coatings for resistance to condensation, frosting, icing, and fouling. Adv Mater Interfaces. 2020;7(10):1902201.
  • Laroche A, Ritzen L, Guillen JAM, et al. Durability of superamphiphobic polyester fabrics in simulated aerodynamic icing conditions. Coatings. 2020;10(11):1058.
  • Zhou X, Sun S, Zhang C, et al. Facile fabrication of durable superamphiphobic PET fabrics. J Coat Technol Res. 2020;17(3):711–718.
  • Yang M, Liu W, Jiang C, et al. Facile fabrication of robust fluorine-free superhydrophobic cellulosic fabric for self-cleaning, photocatalysis and UV shielding. Cellulose. 2019;26(13–14):8153–8164.
  • Liu G, Xia H, Zhang W, et al. Photocatalytic superamphiphobic coatings and the effect of surface microstructures on superamphiphobicity. ACS Appl Mater Interfaces. 2021;13(10):12509–12520.
  • Wang T, Lv C, Ji L, et al. Designing re-entrant geometry: construction of a superamphiphobic surface with large-sized particles. ACS Appl Mater Interfaces. 2020;12(43):49155–49164.
  • Shabanian S, Khatir B, Nisar A, et al. Rational design of perfluorocarbon-free oleophobic textiles. Nat Sustain. 2020;3(12):1059–1066.
  • Wu Y, Zhao M, Guo Z. Multifunctional superamphiphobic SiO2 coating for crude oil transportation. Chem Eng J. 2018;334:1584–1593.
  • Li W, Zong Y, Liu Q, et al. A highly stretchable and biodegradable superamphiphobic fluorinated polycaprolactone nanofibrous membrane for antifouling. Prog Org Coat. 2020;147:105776.
  • Wang H, Zhou H, Niu H, et al. Dual-layer superamphiphobic/superhydrophobic-oleophilic nanofibrous membranes with unidirectional oil-transport ability and strengthened oil-water separation performance. Adv Mater Interfaces. 2015;2(4):1–7.
  • Zuo K, Wu J, Chen S, et al. Superamphiphobic nanocellulose aerogels loaded with silica nanoparticles. Cellulose. 2019;26(18):9661–9671.
  • Zhao ZE, Sun SH, Hu YM, et al. Robust superamphiphobic aluminum surfaces: fabrication and investigation. J Coat Technol Res. 2019;16(6):1707–1714.
  • Zhou H, Wang H, Niu H, et al. Recent progress in durable and self-healing super-nonwettable fabrics. Adv Mater Interfaces. 2018;5(16):1800461.
  • Li D, Guo Z. Versatile superamphiphobic cotton fabrics fabricated by coating with SiO2/FOTS. Appl Surf Sci. 2017;426:271–278.
  • Ai J, Guo Z. Facile preparation of a superamphiphobic fabric coating with hierarchical TiO2 particles. New J Chem. 2020;44(44):19192–19200.
  • Yao Q, Wang C, Fan B, et al. One-step solvothermal deposition of ZnO nanorod arrays on a wood surface for robust superamphiphobic performance and superior ultraviolet resistance. Sci Rep. 2016;6:35505–35511.
  • Han X, Peng J, Jiang S, et al. Robust superamphiphobic coatings based on raspberry-like hollow SnO2 composites. Langmuir. 2020;36(37):11044–11053.
  • Huang C, Wang F, Wang D, et al. Wear-resistant and robust superamphiphobic coatings with hierarchical TiO2/SiO2 composite particles and inorganic adhesives. New J Chem. 2020;44(4):1194–1203.
  • Wang K, Liu X, Tan Y, et al. Highly fluorinated and hierarchical HNTs/SiO2 hybrid particles for substrate-independent superamphiphobic coatings. Chem Eng J. 2019;359:626–640.
  • Pal S, Mondal S, Pal P, et al. Fabrication of durable, fluorine-free superhydrophobic cotton fabric for efficient self-cleaning and heavy/light oil-water separation. Colloid Interface Sci Commun. 2021;44:100469.
  • Pal S, Mondal S, Das A, et al. Two-step fabrication of durable, flexible, and fluorine-free superhydrophobic SiO2-silane@fabric for self-cleaning application. Chemistryselect. 2021;6(7):1669–1684.
  • Pal S, Mondal S, Das A, et al. Fabrication of CuO/TMSPM coated superhydrophobic fabric for self-cleaning and oil-water separation. Fibers Polym. 2021;1–9. DOI: 10.1007/s12221-021-0128-5.
  • Liu X, Wang K, Zhang W, et al. Robust, self-cleaning, anti-fouling, superamphiphobic soy protein isolate composite films using spray-coating technique with fluorinated HNTs/SiO2. Compos Pt B-Eng. 2019;174:107002.
  • Jeong SW, Bolortuya S, Eadi SB, et al. Fabrication of superhydrophobic surfaces based on PDMS coated hydrothermal grown ZnO on PET fabrics. J Adhes Sci Technol. 2020;34(1):102–113.
  • Xiaodong W, Kai Z, Jie D, et al. Facile synthesis of flexible and hydrophobic polymethylsilsesquioxane based silica aerogel via the co-precursor method and ambient pressure drying technique. J Non-Cryst Solids. 2020;530:119826.
  • Banoz O, Guler O. The unusually formation of porous silica nano-stalactite structure by high temperature heat treatment of SiO2 aerogel synthesized from rice hull. Ceram Int. 2020;46(1):370–380.
  • Zhao S, Siqueira G, Drdova S, et al. Additive manufacturing of silica aerogels. Nature. 2020;584(7821):387–392.
  • Xu L, Chen S, Lu X, et al. Durable superamphiphobic silica aerogel surfaces for the culture of 3D cellular spheroids. Natl Sci Rev. 2019; 6(6):1255–1265.
  • Luo G, Wen L, Yang K, et al. Robust and durable fluorinated 8-MAPOSS-based superamphiphobic fabrics with buoyancy boost and drag reduction. Chem Eng J. 2020;383:123125.
  • Pakdel E, Zhao H, Wang J, et al. Superhydrophobic and photocatalytic self-cleaning cotton fabric using flower-like N-doped TiO2/PDMS coating. Cellulose. 2021;28(13):8807–8820.
  • Cao C, Wang F, Lu M. Superhydrophobic CuO coating fabricated on cotton fabric for oil/water separation and photocatalytic degradation. Colloids Surf A Physicochem Eng Asp. 2020;601:125033.
  • Huang H, An Y, Hu X, et al. A plasma sprayed superhydrophobic coating prepared with Al@WO3 core-shell powder and photocatalytic degradation performance. Surf Coat Technol. 2019;369:105–115.
  • Rahmah MI, Sabry RS, Aziz WJ. Preparation of superhydrophobic Ag/Fe2O3/ZnO surfaces with photocatalytic activity. Surf Eng. 2021;37(10):1320–1327.
  • Dong L, Shi M, Xu SJ, et al. Surface construction of fluorinated TiO2 nanotube networks to develop uvioresistant superhydrophobic aramid fabric. RSC Adv. 2020;10(38):22578–22585.
  • Yang Y, Huang W, Guo Z, et al. Robust fluorine-free colorful superhydrophobic PDMS/NH2-MIL-125(Ti)@cotton fabrics for improved ultraviolet resistance and efficient oil-water separation. Cellulose. 2019;26(17):9335–9348.
  • Shen J, Ming P, Zhang X, et al. Broad spectrum anti-fouling, photocatalytic antibacterial and superamphiphobic coating fabricated by composite electrodeposition process. J Electrochem Soc. 2019;166(16):E564–E575.
  • Yu H, Tong Z, Yue S, et al. Effect of SiO2 deposition on thermal stability of Al2O3–SiO2 aerogel. J Eur Ceram Soc. 2021;41(1):580–589.
  • Liu S, Wu X, Li Y, et al. Hydrophobic in-situ SiO2-TiO2 composite aerogel for heavy oil thermal recovery: Synthesis and high temperature performance. Appl Therm Eng. 2021;190:116745.
  • Yu H, Tong Z, Qiao Y, et al. High thermal stability of SiO2-ZrO2 aerogels using solvent-thermal aging. J Solid State Chem. 2020;291:121624.
  • Hu XS, Shen Y, Xu LH, et al. Preparation of flower-like CuS by solvothermal method for photocatalytic, UV protection and EMI shielding applications. Appl Surf Sci. 2016;385:162–170.
  • Xu LH, Liu Y, Yuan X, et al. One-pot preparation of robust, ultraviolet-proof superhydrophobic cotton fabrics for self-cleaning and oil/water separation. Cellulose. 2020;27(15):9005–9026.
  • Cao C, Wang F, Lu M. Preparation of superhydrophobic CuS cotton fabric with photocatalytic and antibacterial activity for oil/water separation. Mater Lett. 2020;260:126956.
  • Yang KC, Xu LH, Pan H, et al. Preparation of copper sulfide by microwave assisted method and its application on superhydrophobic, anti-UV and photocatalytic cotton fabric. Fibers Polym. 2020;21(6):1259–1265.
  • Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–550.
  • Salimi E. Omniphobic surfaces: state-of-the-art and future perspectives. J Adhes Sci Technol. 2019;33(12):1369–1379.
  • Lee JH, Park EJ, Kim DH, et al. Superhydrophobic surfaces with photocatalytic activity under UV and visible light irradiation. Catal Today. 2016;260:32–38.
  • Chen L, Hong J, Butt HJ, et al. Liquid-repellent metal oxide photocatalysts. Chemistry. 2019;25(18):4535–4542.
  • Wang W, Liu R, Chi H, et al. Durable superamphiphobic and photocatalytic fabrics: tackling the loss of super-non-wettability due to surface organic contamination. ACS Appl Mater Interfaces. 2019;11(38):35327–35332.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.