1,065
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

Superhydrophobic surfaces and coatings by electrochemical methods – a review

ORCID Icon
Pages 137-161 | Received 09 Nov 2021, Accepted 16 Jan 2022, Published online: 02 Feb 2022

References

  • Wang S, Liu K, Yao X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev. 2015;115(16):8230–8293.
  • Koch K, Bhushan B, Jung YC, et al. Fabrication of artificial lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter. 2009;5(7):1386–1393.
  • Ensikat HJ, Ditsche-Kuru P, Neinhuis C, et al. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol. 2011;2:152–161.
  • Saji VS. Wax-based artificial superhydrophobic surfaces and coatings. Colloids Surf A. 2020;602:125132.
  • Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944; 40:546.
  • Timmons CO, Zisman WA. Effect of liquid structure on contact angle hysteresis. J. Colloid Interface Sci. 1966;22(2):165–171.
  • Li Y, Quéré D, Lv C, et al. Monostable superrepellent materials. Proc Natl Acad Sci USA. 2017;114(13):3387–3392.
  • Bormashenko E, Gendelman O, Whyman G. Superhydrophobicity of lotus leaves versus birds wings: different physical mechanisms leading to similar phenomena. Langmuir. 2012;28(42):14992–14997.
  • Erbil HY. The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: a review. Surf Sci Rep. 2014;69(4):325–365.
  • Nosonovsky M, Bhushan B. Hierarchical roughness makes superhydrophobic states stable. Microelectron. Eng. 2007;84(3):382–386.
  • Young T. An essay on the cohesion of fluid. Philos Trans R Soc. 1805;95:65–87.
  • Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28(8):988–994.
  • Erbil HY, Cansoy CE. Range of applicability of the wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Langmuir. 2009;25(24):14135–14145.
  • Milne AJB, Amirfazli A. The Cassie equation: how it is meant to be used. Adv Colloid Interface Sci. 2012;170(1-2):48–55.
  • Webb HK, Crawford RJ, Ivanova EP. Wettability of natural superhydrophobic surfaces. Adv Colloid Interface Sci. 2014;210:58–64.
  • Jiaqiang E, Jin Y, Deng Y, et al. Wetting models and working mechanisms of typical surfaces existing in nature and their application on superhydrophobic surfaces: a review. Adv Mater Interfaces. 2018;5(1):1701052.
  • Valipour N, Birjandi FC, Sargolzaei J. Super-non-wettable surfaces: a review. Colloids Surf. A. 2014;448:93–106.
  • Yan YY, Gao N, Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci. 2011;169(2):80–105.
  • Saji VS. Carbon nanostructure-based superhydrophobic surfaces and coatings. Nanotech. Rev. 2021;10(1):518–571.
  • Saji VS. Electrophoretic-deposited Superhydrophobic Coatings. Chem Asian J. 2021;16(5):474–491.
  • Saji VS. Recent progress in supehydrophobic and superamphiphobic coatings for magnesium alloys. J Magnes Alloy. 2021;9(3):748–778.
  • Saji VS. Superhydrophobic surfaces and coatings by electrochemical anodic oxidation and plasma electrolytic oxidation. Adv Colloid Interface Sci. 2020;283:102245.
  • Ma M, Hill RM, Rutledge GC. A review of recent results on superhydrophobic materials based on micro- and nanofibers. J Adhes Sci Technol. 2008;22(15):1799–1817.
  • Superhydrophobic coatings market size, share & trends analysis report by raw material (carbon nanotubes, silica nanoparticles), by property, by end use, and segment forecasts, 2016–2024, Report ID: GVR-1-68038-087-3, September 2016, Accessed 10th August 2021.
  • Celia E, Darmanin T, de Givenchy ET, et al. Recent advances in designing superhydrophobic surfaces. J Colloid Interface Sci. 2013;402:1–18.
  • Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial. Adv Mater. 2002;14(24):1857–1860.
  • Seuss S, Boccaccini AR. Electrophoretic deposition of biological macromolecules, drugs, and cells. Biomacromolecules. 2013;14(10):3355–3369.
  • Diba M, Fam DWH, Boccaccini AR, et al. Electrophoretic deposition of graphene-related materials: a review of the fundamentals. Prog Mater Sci. 2016;82:83–117.
  • Saji VS. Electrodeposition in bulk metallic glasses. Materialia. 2018;3:1–11.
  • Darmanin T, de Givenchy ET, Amigoni S, et al. Superhydrophobic surfaces by electrochemical processes. Adv Mater. 2013;25(10):1378–1394.
  • Tam T, Palumbo G, Erb U. Recent advances in superhydrophobic electrodeposits. Materials. 2016;9(3):151.
  • Liu J, Fang X, Zhu C, et al. Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: a comprehensive review. Colloids Surf. A. 2020;607:125498.
  • Bai H, Li C, Shi G. Electrochemical fabrication of superhydrophobic surfaces on metal and semiconductor substrates. J. Adhes. Sci. Technol. 2008;22(15):1819–1839.
  • Zaffora A, Di Franco F, Megna B, et al. One-step electrodeposition of superhydrophobic coating on 316L stainless steel. Metals. 2021;11(11):1867.
  • Xu N, Sarkar DK, Chen XG, et al. Corrosion performance of superhydrophobic nickel stearate/nickel hydroxide thin films on aluminum alloy by a simple one-step electrodeposition process. Surf Coat Technol. 2016;302:173–184.
  • Rahimi E, Rafsanjani-Abbasi A, Kiani-Rashid A, et al. Morphology modification of electrodeposited superhydrophobic nickel coating for enhanced corrosion performance studied by AFM, SEM-EDS and electrochemical measurements. Colloid Surf A. 2018;547:81–94.
  • Xiao H, Hu A, Hang T, et al. Electrodeposited nanostructured cobalt film and its dual modulation of both superhydrophobic property and adhesiveness. Appl Surf Sci. 2015;324:319–323.
  • Zhu X, Zhou S, Yan Q. Ternary graphene/amorphous carbon/nickel nanocomposite film for outstanding superhydrophobicity. Chem Phys. 2018;505:19–25.
  • Subhadarshini S, Singh R, Goswami DK, et al. Electrodeposited Cu2O nanopetal architecture as a superhydrophobic and antibacterial surface. Langmuir. 2019;35(52):17166–17176.
  • Li B, Ouyang Y, Haider Z, et al. One-step electrochemical deposition leading to superhydrophobic matrix for inhibiting abiotic and microbiologically influenced corrosion of Cu in seawater environment. Colloid Surf A. 2021;616:126337.
  • Huang Y, Sarkar DK, Chen X. Grant from fabrication of superhydrophobic surfaces on aluminum alloy via electrodeposition of copper followed by electrochemical modification. Nano-Micro Lett. 2011;3(3):160–165.
  • Haghdoost A, Pitchumani R. Fabricating superhydrophobic surfaces via a two-step electrodeposition technique. Langmuir. 2014;30(14):4183–4191.
  • Yu Z, Lei Y, Yu W, et al. Fluorescence enhanced lab-on-a-chip patterned using a hybrid technique of femtosecond laser direct writing and anodized aluminum oxide porous nanostructuring. Nanoscale Adv. 2019;1(9):3474–3484.
  • Zheng TX, Hu YB, Pan FS, et al. Fabrication of corrosion-resistant superhydrophobic coating on magnesium alloy by one-step electrodeposition method. J Magnes Alloys. 2019;7(2):193–202.
  • Liu Q, Chen D, Kang Z. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy. ACS Appl Mater Interfaces. 2015;7(3):1859–1867.
  • Liu X, Zhang TC, He HQ, et al. A stearic acid/CeO2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition. J Alloys Compds. 2020;834:155210.
  • Wang Y, Gu ZP, Xin Y, et al. Facile formation of super-hydrophobic nickel coating on magnesium alloy with improved corrosion resistance. Colloids Surf A. 2018;538:500–505.
  • Yuan J, Wang JH, Zhang K, et al. Fabrication and properties of a superhydrophobic film on an electroless plated magnesium alloy. RSC Adv. 2017;7(46):28909–28917.
  • Zang DM, Zhu RW, Zhang W, et al. Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod. Adv Funct Mater. 2017;27(8):1605446.
  • Song ZW, Xie ZH, Ding LF, Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030024, Shanxi, China, et al. Corrosion resistance of super-hydrophobic coating on AZ31B Mg alloy. Int J Electrochem Sci. 2018;13:6190–6200.
  • Wang S, Hou C, Wu M, et al. Effect of choline chloride on electrodeposited superhydrophobic nickel film and the corrosion protection application. Colloid Surf A. 2021;614:126185.
  • Yan Q, Zhou S, Li Q, et al. Superhydrophobic surface by SiO2 particle modified SiO2-Ni/a-C:H film deposition and superior corrosion protection. Surf Topogr Metrol Prop. 2019;7(1):014003.
  • Zhou S, Zhu X, Ma L, et al. Outstanding superhydrophobicity and corrosion resistance on carbon-based film surfaces coupled with multi-walled carbon nanotubes and nickel nano-particles. Surf Sci. 2018;677:193–202.
  • Zhu X, Zhou S, Yan Q, et al. Multi-walled carbon nanotubes enhanced superhydrophobic MWCNTs-Co/a-C:H carbon-based film for excellent self-cleaning and corrosion resistance. Diamond Rel Mater. 2018;86:87–97.
  • Chen X, He Y, Fan Y, et al. Preparation of multi-functional superhydrophobic lanthanum surface on carbon steel via facile electrochemical method. Appl Phys A. 2016;122(12):10.
  • Lee TC, Wang WJ, Han TY. Preparation of a superhydrophobic ZnO film on ITO glass via electrodeposition followed by oxidation – effect of the deposition time. J Adhes Sci Technol. 2009;23(13–14):1799–1810.
  • Wang L, Guo S, Dong S. Facile electrochemical route to directly fabricate hierarchical spherical cupreous microstructures: toward superhydrophobic surface. Electrochem Commun. 2008;10(4):655–658.
  • Wang L, Guo S, Hu X, et al. Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures: electrodeposited superhydrophobic surface. Electrochem Commun. 2008;10(1):95–99.
  • Fan Y, He Y, Luo P, et al. Facile way in building superhydrophobic zirconium surface for controllable water-oil separation. Mater Lett. 2017;188:115–118.
  • Wang S, Huang H, Li X, et al. An effective approach to fabricate the corrosion resistance of superhydrophobic ZnO/Ni composite coating on carbon steel substrate. J Adhes Sci Technol. 2021;1–18. https://doi.org/10.1080/01694243.2021.2010882
  • Ates M. A review on conducting polymer coatings for corrosion protection. J Adhes Sci Technol. 2016;30(14):1510–1536.
  • Kwon Y, Lee Y, Kim S, et al. Conducting polymer coating on a high-voltage cathode based on soft chemistry approach toward improving battery performance. ACS Appl Mater Interfaces. 2018;10(35):29457–29466.
  • Dunand O, Darmanin T, Guittard F. Superhydrophobic conducting polymers based on hydrocarbon poly(3,4-ethylenedioxyselenophene). Chemphyschem. 2013;14(13):2947–2953.
  • Nicolas M. Fabrication of superhydrophobic surfaces by electropolymerization of thiophene and pyrrole derivatives. J Adhes Sci Technol. 2008;22(3–4):365–377.
  • Chagas GR, Darmanin T, Godeau G, et al. Superhydrophobic properties of electrodeposited fluorinated polypyrenes. J Fluorine Chem. 2017;193:73–81.
  • Leon AC, Imperial RES, Chen Q, et al. One-step fabrication of superhydrophobic/superoleophilic electrodeposited polythiophene for oil and water separation. Macromol Mater Eng. 2019;304(7):1800722.
  • Darmanin T, de Givenchy ET, Guittard F. Superhydrophobic surfaces of electrodeposited polypyrroles bearing fluorinated liquid crystalline segments. Macromolecules. 2010;43(22):9365–9370.
  • Darmanin T, Guittard F. Fluorophobic effect for building up the surface morphology of electrodeposited substituted conductive polymers. Langmuir. 2009;25(10):5463–5466.
  • Chagas GR, Kiryanenko D, Godeau G, et al. pH-driven wetting switchability of electrodeposited superhydrophobic copolymers of pyrene bearing acid functions and fluorinated chains. ChemPhysChem. 2017;18(23):3429–3436.
  • El-Maiss J, Darmanin T, Guittard F. Controlling electrodeposited conducting polymer nanostructures with the number and the length of fluorinated chains for adjusting superhydrophobic properties and adhesion. RSC Adv. 2015;5(47):37196–37205.
  • Darmanin T, Guittard F. Superhydrophobic surface properties with various nanofibrous structures by electrodeposition of PEDOT polymers with short fluorinated chains and rigid spacers. Synth Metals. 2015;205:58–63.
  • Darmanin T, Guittard F. pH- and voltage-switchable superhydrophobic surfaces by electro-copolymerization of EDOT derivatives containing carboxylic acids and long alkyl chains. Chemphyschem. 2013;14(11):2529–2533.
  • Xu L, Chen Z, Chen W, et al. Electrochemical synthesis of perfluorinated ion doped conducting polyaniline films consisting of helical fibers and their reversible switching between superhydrophobicity and superhydrophilicity. Macromol Rapid Commun. 2008;29(10):832–838.
  • Wang F, Luo H, Wang Q, et al. Preparation of superhydrophobic polymeric film on aluminum plates by electrochemical polymerization. Molecules. 2009;14(11):4737–4746.
  • Xu H, Fan S, Lu Y, et al. Proposal and verification of a novel superhydrophobic-conductive anti-corrosion polyaniline-silica coating. BCSJ. 2020;93(9):1114–1120.
  • Tan J, Zhang Z, He Y, et al. Electrochemical synthesis of conductive, superhydrophobic and adhesive polypyrrole-polydopamine nanowires. Synth Metals. 2017;234:86–94.
  • Leon AC, Pernites RB, Advincula RC. Superhydrophobic colloidally textured polythiophene film as superior anticorrosion coating. ACS Appl Mater Interfaces. 2012;4(6):3169–3176.
  • Liu M, Li J, Guo Z. Electrochemical route to prepare polyaniline-coated meshes with controllable pore size for switchable emulsion separation. Chem Eng J. 2016;304:115–120.
  • Sarkar P, Nicholson PS. Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J Am Ceram Soc. 1996;79(8):1987–2002.
  • Boccaccini AR, Keim S, Ma R, et al. Electrophoretic deposition of biomaterials. J R Soc Interface. 2010;7:S581–S613.
  • Hu S, Li W, Finklea H, et al. A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells. Adv Colloid Interface Sci. 2020;276:102102.
  • Joung YS, Buie CR. Electrophoretic deposition of unstable colloidal suspensions for superhydrophobic surfaces. Langmuir. 2011;27(7):4156–4163.
  • Huang Y, Sarkar DK, Chen XG. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process. Appl Surf Sci. 2015;327:327–334.
  • Joung YS, Buie CR. Antiwetting fabric produced by a combination of layer-by-layer assembly and electrophoretic deposition of hydrophobic nanoparticles. ACS Appl Mater Interfaces. 2015;7(36):20100–20110.
  • Lai Y, Tang Y, Gong J, et al. Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging. J Mater Chem. 2012;22(15):7420–7426.
  • Naghdi S, Jaleh B, Shahbazi N. Reversible wettability conversion of electrodeposited graphene oxide/titania nanocomposite coating: investigation of surface structures. Appl Surf Sci. 2016;368:409–416.
  • Balram A, Santhanagopalan S, Hao B, et al. Electrophoretically‐deposited metal‐decorated CNT nanoforests with high thermal/electric conductivity and wettability tunable from hydrophilic to superhydrophobic. Adv Funct Mater. 2016;26(15):2571–2579.
  • Jaleh B, Shariati K, Khosravi M, et al. Uniform and stable electrophoretic deposition of graphene oxide on steel mesh: Low temperature thermal treatment for switching from superhydrophilicity to superhydrophobicity. Colloids Surf A. 2019;577:323–332.
  • Wang P, Zhang D. Super-hydrophobic film prepared with reduced graphene sheets and its application as corrosion barrier to copper. AMM. 2013;365–366:1100–1105.
  • Ke X, Zhou X, Hao G, et al. Rapid fabrication of superhydrophobic Al/Fe2O3 nanothermite film with excellent energy-release characteristics and long-term storage stability. Appl Surf Sci. 2017;407:137–144.
  • Zeng Q, Zheng C, Han K, et al. A biomimic superhydrophobic and anti-blood adhesion coating. Prog Org Coat. 2020;140:105498.
  • Lai Y, Chen Y, Tang Y, et al. Electrophoretic deposition of titanate nanotube films with extremely large wetting contrast. Electrochem Commun. 2009;11(12):2268–2271.
  • Lee W, Park SJ. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem Rev. 2014;114(15):7487–7556.
  • Masuda H, Hasegwa F, Ono S. Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J Electrochem Soc. 1997;144(5):L127–L130.
  • Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl. 2011;50(13):2904–2939.
  • Yao L, Zheng M, Ma L, et al. Self-assembly of diverse alumina architectures and their morphology-dependent wettability. Mater Res Bull. 2011;46(9):1403–1408.
  • Peng S, Tian D, Miao X, et al. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion. J Colloid Interface Sci. 2013;409:18–24.
  • Tang K, Yu J, Zhao Y, et al. Fabrication of super-hydrophobic and super-oleophilic boehmite membranes from anodic alumina oxide film via a two-phase thermal approach. J Mater Chem. 2006;16(18):1741–1745.
  • Wu H, Xie L, Zhang R, et al. A novel method to fabricate organic-free superhydrophobic surface on titanium substrates by removal of surface hydroxyl groups. Appl Surf Sci. 2019;479:1089–1097.
  • Kang H, Cheng Z, Lai H, et al. Superlyophobic anti-corrosive and self-cleaning titania robust mesh membrane with enhanced oil/water separation. Sep Purif Technol. 2018;201:193–204.
  • Liu Y, Yao WG, Yin XM, et al. Controlling wettability for improved corrosion inhibition on magnesium alloy as biomedical implant materials. Adv Mater Interfaces. 2016;3(8):1500723.
  • Nakajima D, Kikuchi T, Natsui S, et al. Advancing and receding contact angle investigations for highly sticky and slippery aluminum surfaces fabricated from nanostructured anodic oxide. RSC Adv. 2018;8(65):37315–37323.
  • Fujii T, Aoki Y, Habazaki H. Superhydrophobic hierarchical surfaces fabricated by anodizing of oblique angle deposited Al–Nb alloy columnar films. Appl Surf Sci. 2011;257(19):8282–8288.
  • Huang J, Lai Y, Wang L, et al. Controllable wettability and adhesion on bioinspired multifunctional TiO2 nanostructure surfaces for liquid manipulation. J Mater Chem A. 2014;2(43):18531–18538.
  • Lin CW, Chung CJ, Chou CM, et al. Morphological effect governed by sandblasting and anodic surface reforming on the super-hydrophobicity of AISI 304 stainless steel. Thin Solid Films. 2016;620:88–93.
  • Luo S, Zheng Q, Jie X, et al. Fabrication of a micro-nano structure on steel surface and surface wetting. RSC Adv. 2016;6(53):47588–47594.
  • Barati Darband G, Aliofkhazraei M, Hamghalam P, et al. Plasma electrolytic oxidation of magnesium and its alloys: mechanism, properties and applications. J Magnes Alloy. 2017;5(1):74–132.
  • An L, Ma Y, Liu Y, et al. Effects of additives, voltage and their interactions on PEO coatings formed on magnesium alloys. Surf Coat Technol. 2018;354:226–235.
  • Sikdar S, Menezes PV, Maccione R, et al. Plasma electrolytic oxidation (PEO) process—processing, properties, and applications. Nanomaterials. 2021;11(6):1375.
  • Fattah-Alhosseini A, Chaharmahali R. Enhancing corrosion and wear performance of PEO coatings on Mg alloys using graphene and graphene oxide additions: a review. FlatChem. 2021;27:100241.
  • Kaseem M, Ramachandraiah R, Hossain S, et al. A review on LDH-smart functionalization of anodic films of Mg alloys. Nanomaterials. 2021;11(2):536.
  • Zhang CL, Zhang F, Song L, et al. Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg-Li-Ca alloy. J. Alloy Compds. 2017;728:815–826.
  • Tang Y, Zhao X, Jiang K, et al. The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment. Surf Coat Technol. 2010;205(6):1789–1792.
  • Gnedenkov SV, Sinebryukhov SL, Egorkin VS, et al. Wetting and electrochemical properties of hydrophobic and superhydrophobic coatings on titanium. Colloids Surf A. 2011;383(1–3):61–66.
  • Gnedenkov SV, Sinebryukhov SL, Egorkin VS, et al. Wettability and electrochemical properties of the highly hydrophobic coatings on PEO-pretreated aluminum alloy. Surf Coat Technol. 2016;307:1241–1248.
  • Zhang Y, Feyerabend F, Tang S, et al. A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium. Mater Sci Eng C Mater Biol Appl. 2017;78:405–412.
  • Wang ZH, Zhang JM, Li Y, et al. Enhanced corrosion resistance of micro-arc oxidation coated magnesium alloy by superhydrophobic Mg − Al layered double hydroxide coating. Trans Nonferrous Metal Soc China. 2019;29(10):2066–2077.
  • Arun S, Sooraj PN, Hariprasad S, et al. Fabrication of superhydrophobic coating on PEO treated zirconium samples and its corrosion resistance. Mater Today Proc. 2020;27:2056-2060.
  • Jiang D, Zhou H, Wan S, et al. Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly. Surf Coat Technol. 2018;339:155–166.
  • Jiang D, Xia X, Hou J, et al. Enhanced corrosion barrier of microarc-oxidized Mg alloy by self-healing superhydrophobic silica coating. Ind Eng Chem Res. 2019;58(1):165–178.
  • Liu Z, Zhang F, Chen Y, et al. Electrochemical fabrication of superhydrophobic passive films on aeronautic steel surface. Colloids Surfaces A. 2019;572:317–325.
  • Li X, Yin S, Huang S, et al. Fabrication of durable superhydrophobic Mg alloy surface with water-repellent, temperature-resistant, and self-cleaning properties. Vacuum. 2020;173:109172.
  • Shi T, Li X, Zhang C, et al. One-step preparation of the superhydrophobic Al alloy surface with enhanced corrosion and wear resistance. Mater Corros. 2021;72(5):904–911.
  • Ressine A, Finnskog D, Marko-Varga G, et al. Superhydrophobic properties of nanostructured-microstructured porous silicon for improved surface-based bioanalysis. Nanobiotechnol. 2008;4(1–4):18–27.
  • Lu Y, Xu W, Song J, et al. Preparation of superhydrophobic titanium surfaces via electrochemical etching and fluorosilane modification. Appl Surf Sci. 2012;263:297–301.
  • Sun J, Zhang F, Song J, et al. Electrochemical fabrication of superhydrophobic Zn surfaces. Appl Surf Sci. 2014;315:346–352.
  • Yu M, Zhang M, Sun J, et al. Facile electrochemical method for the fabrication of stable corrosion-resistant superhydrophobic surfaces on Zr-based bulk metallic glasses. Molecules. 2021;26(6):1558.
  • Zhou Y, Qu K, Zhang L, et al. Superhydrophobic silicon fabricated by phosphomolybdic acid-assisted electrochemical etching. Quim Nova. 2019;42:792–796.
  • Lee BE, You Y, Choi W, et al. Nanoengineered superhydrophobic surfaces to prevent adhesion of Listeria monocytogenes for improved food safety. Trans ASABE. 2020;63(5):1401–1407.
  • Dong S, Wang Z, An L, et al. Facile fabrication of a superhydrophobic surface with robust micro-/nanoscale hierarchical structures on titanium substrate. Nanomaterials. 2020;10(8):1509.
  • Ma N, Cheng D, Zhang J, et al. A simple, inexpensive and environmental-friendly electrochemical etching method to fabricate superhydrophobic GH4169 surfaces. Surf Coat Technol. 2020;399:126180.
  • Kalgudi S, Pavithra GP, Prabhu KN, et al. Ffect of surface treatment on wetting behavior of copper. Mater Today Proc. 2021;35:295–297.
  • Rajurkar KP, Sundaram MM, Malshe AP. Review of electrochemical and electrodischarge machining. Proc CIRP. 2013;6:13–26.
  • McGeough JA. Principles of electrochemical machining. London: Chapman and Hall; 1974.
  • Schuster R, Kirchner V, Allongue P, et al. Electrochemical micromachining. Science. 2000;289(5476):98–101.
  • Song J, Huang W, Liu J, et al. Electrochemical machining of superhydrophobic surfaces on mold steel substrates. Surf Coat Technol. 2018;344:499–506.
  • Fan K, Jin Z, Zhu X, et al. A facile electrochemical machining process to fabricate superhydrophobic surface on iron materials and its applications in anti-icing. J Disp Sci Technol. 2021;42(3):457–464.
  • Fan K, Jin Z, Bao Y, et al. A facile and less-polluting electrochemical method to fabricate multifunctional superhydrophobic film on iron materials. Colloids Surf A. 2020;590:124495.
  • Hao X, Wang L, Lv D, et al. Fabrication of hierarchical structures for stable superhydrophobicity on metallic planar and cylindrical inner surfaces. Appl Surf Sci. 2015;325:151–159.
  • Sun Y, Ling S, Zhao D, et al. Through-mask electrochemical micromachining of micro pillar arrays on aluminum. Surf Coat Technol. 2020;401:126277.
  • Song JL, Xu WJ, Liu X, Lu Y, et al. Electrochemical machining of super-hydrophobic Al surfaces and effect of processing parameters on wettability. Appl Phys A. 2012;108(3):559–568.
  • Xu W, Song J, Sun J, et al. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. ACS Appl Mater Interfaces. 2011;3(11):4404–4414.
  • Song J, Xu W, Lu Y, et al. Rapid fabrication of superhydrophobic surfaces on copper substrates by electrochemical machining. Appl Surf Sci. 2011;257(24):10910–10916.
  • Zhang Y, Kang M, Jin M, et al. Study on the corrosion resistance of superhydrophobic Ni-CoP-BN(h) nanocomposite coatings prepared by electrochemical machining and fluorosilane modification. Int J Electrochem Sci. 2020;15:2052–2069
  • Zhang Y, Kang M, Li H, College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China, et al. Study of the corrosion resistance of a superhydrophobic Ni-P-Al2O3 composite coating based on electrochemical machining. Int J Electrochem Sci. 2019;14:6032–6044.
  • Yan XY, Chen GX, Liu JW. Preparation of superhydrophobic copper surface by a novel silk-screen printing aided electrochemical machining method. IOP Conf Ser: Mater Sci Eng. 2018;324:012039.
  • Sun J, Cheng W, Song JL, et al. Fabrication of superhydrophobic micro post array on aluminum substrates using mask electrochemical machining. Chin J Mech Eng. 2018;31(1):1–7.
  • Xiao S, Zhang H, Guo S. Fabrication of a Zr-based bulk metallic glass surface with extreme wettability. J Non-Cryst Solids. 2020;536:120001.
  • Wang L, Yang J, Zhu Y, et al. An environment-friendly fabrication of superhydrophobic surfaces on steel and magnesium alloy. Mater Lett. 2016;171:297–299.
  • Yu HP, Tian X, Luo H, Ma XL. Hierarchically textured surfaces of versatile alloys for superamphiphobicity. Mater Lett. 2015;138:184–187.
  • Foster EL, De Leon ACC, Mangadlao J, et al. Electropolymerized and polymer grafted superhydrophobic, superoleophilic, and hemi-wicking coatings. J Mater Chem. 2012;22(22):11025–11031.
  • Li H, Tang S, Zhou Q, et al. Durable superhydrophobic cotton fabrics prepared by surface-initiated electrochemically mediated ATRP of polyhedral vinylsilsesquioxane and subsequent fluorination via thiol-Michael addition reaction. J Colloid Interface Sci. 2021;593:79–88.
  • Hu F, Xu P, Wang H, et al. Superhydrophobic and anti-corrosion Cu microcones/Ni–W alloy coating fabricated by electrochemical approaches. RSC Adv. 2015;5(126):103863–103868.
  • Cheng Y, Lu S, Xu W, et al. Controllable fabrication of superhydrophobic alloys surface on copper substrate for self-cleaning, anti-icing, anti-corrosion and anti-wear performance. Surf Coat Technol. 2018;333:61–70.
  • Mahajan M, Bhargava SK, O’Mullane AP. Electrochemical formation of porous copper 7,7,8,8-tetracyanoquinodimethane and copper 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane honeycomb surfaces with superhydrophobic properties. Electrochim Acta. 2013;101:186–195.
  • Wang P, Yao T, Sun B, et al. A cost-effective method for preparing mechanically stable anti-corrosive superhydrophobic coating based on electrochemically exfoliated graphene. Colloids Surf. A. 2017;513:396–401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.