768
Views
12
CrossRef citations to date
0
Altmetric
Review

Recent advances in laser-cladding of metal alloys for protective coating and additive manufacturing

, , , , & ORCID Icon
Pages 2482-2504 | Received 20 Mar 2022, Accepted 30 May 2022, Published online: 10 Jun 2022

References

  • Zhuang D-D, Du B, Zhang S-H, et al. Effect and action mechanism of ultrasonic assistance on microstructure and mechanical performance of laser cladding 316L stainless steel coating. Surf Coat Technol. 2022;433:128122.
  • Liu H, Tan CKI, Dong X, et al. Laser-cladding and robotic hammer peening of stainless steel 431 on low alloy steel 4140 for surface enhancement and corrosion protections. J Adhes Sci Technol. 2021, DOI: 10.1080/01694243.2021.2011657.
  • Rahman Rashid RA, Javed MA, Barr C, et al. Effect of in situ tempering on the mechanical, microstructural and corrosion properties of 316L stainless steel laser-cladded coating on mild steel. Int J Adv Manuf Technol. 2021;117(9–10):2949–2958.
  • Liu H, Tan CKI, Wei Y, et al. Laser-cladding and interface evolutions of inconel 625 alloy on low alloy steel substrate upon heat and chemical treatments. Surf Coat Technol. 2020;404:126607.
  • Liu H, Tan CKI, Meng TL, et al. Hot corrosion and internal spallation of laser-cladded inconel 625 superalloy coatings in molten sulfate salts. Corros Sci. 2021;193:109869.
  • Zhao Z, Chen J, Guo S, et al. Influence of α/β interface phase on the tensile properties of laser cladding deposited Ti–6Al–4V titanium alloy. J Mater Sci Technol. 2017;33(7):675–681.
  • Cottam R, Brandt M. Laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate: effect of laser cladding parameters on microstructure. Phys Proc. 2011;12:323–329.
  • Chen H, Huang G, Lu Y, et al. Epitaxial laser deposition of single crystal Ni-based superalloy: variation of stray grains. Mater Charact. 2019;158:109982.
  • Xu X, Han J, Wang C, et al. Laser cladding of composite bioceramic coatings on titanium alloy. J Mater Eng Perform. 2016;25(2):656–667.
  • Liu H, Tan CKI. Laser-cladding on low alloy steel: interface and heat affected zone. Metal Finishing News. 2022;23(1):54.
  • Liu H, Ivan Tan CK, Wei Y, et al. Robotic hammer peening-induced martensite in austenitic steels: spatial distributions of plastic deformation and phase transformation. Procedia CIRP. 2020;87:297–301.
  • Chen J, Wang S-H, Xue L. On the development of microstructures and residual stresses during laser cladding and post-heat treatments. J Mater Sci. 2012;47(2):779–792.
  • Telasang G, Dutta Majumdar J, Wasekar N, et al. Microstructure and mechanical properties of laser clad and post-cladding tempered AISI H13 tool steel. Metall Mat Trans A. 2015;46(5):2309–2321.
  • Lin X, Wang P, Zhu H, et al. A novel processing method based on the 3-spot diode laser source for the laser cladding of stainless-steel ball valves. Opt Laser Technol. 2021;141:107142.
  • Zhu L, Yang Z, Xin B, et al. Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of inconel 718. Surf Coat Technol. 2021;410:126964.
  • Yao Z, Wang Z, Chen J, et al. Equiaxed microstructure formation by ultrasonic assisted laser metal deposition. Manuf Lett. 2022;31:56–59.
  • Wen X, Cui X, Jin G, et al. Design and characterization of FeCrCoAlMn0.5Mo0.1 high-entropy alloy coating by ultrasonic assisted laser cladding. J Alloys Compd. 2020;835:155449.
  • Wang Y, Shi J. Recrystallization behavior and tensile properties of laser metal deposited inconel 718 upon in-situ ultrasonic impact peening and heat treatment. Mater Sci Eng A. 2020;786:139434.
  • Neto L, Williams S, Ding J, et al. Mechanical properties enhancement of additive manufactured Ti-6Al-4V by machine hammer peening. Singapore: Springer Singapore; 2020.
  • Liu H, Meng TL, Cao J, et al. Advanced surface engineering and protective coating. In: Proceedings of the 2nd International Conference on Advanced Surface Enhancement (INCASE 2021). Singapore: Springer Singapore; 2021.
  • Zhou H, Chen Z, Li M, et al. Effect of magnetic-electric-ultrasonic fields on microstructure and properties of Ni60A laser cladding coating. Mater Lett X. 2022;14:100132.
  • Goodarzi DM, Pekkarinen J, Salminen A. Effect of process parameters in laser cladding on substrate melted areas and the substrate melted shape. Laser Appl. 2015;27(S2):S29201.
  • Liu W-W, Tang Z-J, Liu X-Y, et al. A review on in-situ monitoring and adaptive control technology for laser cladding remanufacturing. Procedia CIRP. 2017;61:235–240.
  • Heigel JC, Michaleris P, Palmer TA. In situ monitoring and characterization of distortion during laser cladding of inconel® 625. J Mater Process Technol. 2015;220:135–145.
  • Ocelík V, Bosgra J, de Hosson JTM. In-situ strain observation in high power laser cladding. Surf Coat Technol. 2009;203(20–21):3189–3196.
  • Gribova V, Kulchin Y, Nikitin A, et al. The concept of support for Laser-Based additive manufacturing on the basis of artificial intelligence methods. Cham: Springer International Publishing; 2020.
  • Kulchin YN, Gribova VV, Yatsko DS, et al. Cloud infrastructure for intelligent decision support in titanium carbide laser cladding. In: 2021 XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE); 2021.
  • Imam HZ, Zheng Y, Martinez P, et al. Vision-based damage localization method for an autonomous robotic laser cladding process. Procedia CIRP. 2021;104:827–832.
  • Zhao S. Application of machine learning in understanding the irradiation damage mechanism of high-entropy materials. J Nucl Mater. 2022;559:153462.
  • Chen S, Cheng Y, Gao H. Machine learning for high-entropy alloys. In: Cheng Y, Wang T, Zhang G, editors. Artificial intelligence for materials science. Cham: Springer International Publishing; 2021. p. 21–58.
  • Katiyar NK, Goel G, Goel S. Emergence of machine learning in the development of high entropy alloy and their prospects in advanced engineering applications. Emergent Mater. 2021;4(6):1635–1648.
  • Zhu L, Xue P, Lan Q, et al. Recent research and development status of laser cladding: a review. Opt Laser Technol. 2021;138:106915.
  • Liu Y, Ding Y, Yang L, et al. Research and progress of laser cladding on engineering alloys: a review. J Manuf Process. 2021;66:341–363.
  • Arif ZU, Khalid MY, ur Rehman E, et al. A review on laser cladding of high-entropy alloys, their recent trends and potential applications. J Manuf Process. 2021;68:225–273.
  • Silvello A, Cavaliere P, Yin S, et al. Microstructural, mechanical and wear behavior of HVOF and cold-sprayed high-entropy alloys (HEAs) coatings. J Therm Spray Tech. 2022;31(4):1184–1206.
  • Abhijith NV, Kumar D, Kalyansundaram D. Development of single-stage TiNbMoMnFe high-entropy alloy coating on 304L stainless steel using HVOF thermal spray. J Therm Spray Tech. 2022;31(4):1032–1044.
  • Liu H, Tan CKI, Meng TL, et al. Direct deposition of low-cost carbon fiber reinforced stainless steel composites by twin-wire arc spray. J Mater Process Technol. 2022;301:117440.
  • DePalma K, Walluk M, Martin LP, et al. Investigation of mechanical properties of twin wire arc repair of cast iron components. J Therm Spray Tech. 2022;31(1–2):315–328.
  • Ghadami F, Ghadami S, Davoudabadi MA. Sliding wear behavior of the nanoceria-doped AlCrFeCoNi high-entropy alloy coatings deposited by air plasma spraying technique. J Therm Spray Tech. 2022;31(4):1263–1275.
  • Li C-J, Luo X-T, Dong X-Y, et al. Recent research advances in plasma spraying of bulk-like dense metal coatings with metallurgically bonded lamellae. J Therm Spray Tech. 2022;31(1–2):5–27.
  • Yin S, Cavaliere P, Aldwell B, et al. Cold spray additive manufacturing and repair: fundamentals and applications. Addit Manuf. 2018;21:628–650.
  • He L, Hassani M. A review of the mechanical and tribological behavior of cold spray metal matrix composites. J Therm Spray Tech. 2020;29(7):1565–1608.
  • Thawari N, et al. Influence of buffer layer on surface and tribomechanical properties of laser cladded stellite 6. Mater Sci Eng B Adv Funct Solid State Mater. 2021;263, 114799.
  • Chen Y, Lu F, Zhang K, et al. Dendritic microstructure and hot cracking of laser additive manufactured inconel 718 under improved base cooling. J Alloys Compd. 2016;670:312–321.
  • Yang J, Li F, Wang Z, et al. Cracking behavior and control of rene 104 superalloy produced by direct laser fabrication. J Mater Process Technol. 2015;225:229–239.
  • Eskin DG, Suyitno, L, Katgerman . Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog Mater Sci. 2004;49(5):629–711.
  • Wu Z, Qian M, Brandt M, et al. Ultra-high-speed laser cladding of stellite(R)6 alloy on mild steel. JOM. 2020;72(12):4632–4638.
  • Xu YF, Sun Y, Wang G, et al. Microstructure and  properties of iron-based alloys coatings prepared by high-speed laser cladding. Chinese J Lasers, 2021;48(10), 222–230.
  • Zhang Y, et al. Microstructure and wear resistance of Ni-based WC coating by ultra-high speed laser cladding. Acta Metall Sinica. 2020;56(11):1530–1540.
  • Li L, Shen F, Zhou Y, et al. Comparative study of stainless steel AISI 431 coatings prepared by extreme-high-speed and conventional laser cladding. Laser Appl. 2019;31(4):042009.
  • Liu H, Wei Y, Tan CKI, et al. XRD and EBSD studies of severe shot peening induced martensite transformation and grain refinements in austenitic stainless steel. Mater Charact. 2020;168:110574.
  • Pu Z, Song G-L, Yang S, et al. Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy. Corros Sci. 2012;57:192–201.
  • Lu JZ, Wu LJ, Sun GF, et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts. Acta Mater. 2017;127:252–266.
  • Liu H, Wei Y, Ivan Tan CK, et al. Laser-treatment-induced morphology and structure modifications of stainless steel: element segregations and phase evolutions. Mater Chem Phys. 2021;266:124570.
  • Hua D, Chong H, Cai L, et al. Beam size adjustable high uniformity line beam diode laser system. In: SPIE LASE. Vol. 11982. SPIE; 2022. San Francisco, California, United States.
  • Mok SH, Bi G, Folkes J, et al. Deposition of Ti–6Al–4V using a high power diode laser and wire, part I: investigation on the process characteristics. Surf Coat Technol. 2008;202(16):3933–3939.
  • Pessa M, Peng CS, Jouhti T, et al. Towards high-performance nitride lasers at 1.3 μm and beyond. IEEE Proc Optoelectron. 2003;150(1):12–21.
  • Riveiro A, Mejías A, Lusquiños F, et al. Laser cladding of aluminium on AISI 304 stainless steel with high-power diode lasers. Surf Coat Technol. 2014;253:214–220.
  • Liu S, Farahmand P, Kovacevic R. Optical monitoring of high power direct diode laser cladding. Opt Laser Technol. 2014;64:363–376.
  • Bachmann M, Avilov V, Gumenyuk A, et al. About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts. Int J Heat Mass Transf. 2013;60:309–321.
  • Chen R, Wang C, Jiang P, et al. Effect of axial magnetic field in the laser beam welding of stainless steel to aluminum alloy. Mater Des. 2016;109:146–152.
  • Kern M, Berger P, Hugel H. Magneto-fluid dynamic control of seam quality in CO2 laser beam welding. Weld J. 2000;79(3):72.
  • Bachmann M, Avilov V, Gumenyuk A, et al. Experimental and numerical investigation of an electromagnetic weld Pool control for laser beam welding. Phys Proc. 2014;56:515–524.
  • Zhang N, Liu W, Deng D, et al. Effect of electric-magnetic compound field on the pore distribution in laser cladding process. Opt Laser Technol. 2018;108:247–254.
  • Wang L, Yao J, Hu Y, et al. Suppression effect of a steady magnetic field on molten pool during laser remelting. Appl Surf Sci. 2015;351:794–802.
  • Qi K, Yang Y, Sun R, et al. Effect of magnetic field on crack control of Co-based alloy laser cladding. Opt Laser Technol. 2021;141:107129.
  • Bondareva NS, Sheremet MA. Effect of inclined magnetic field on natural convection melting in a square cavity with a local heat source. J Magn Magn Mater. 2016;419:476–484.
  • Yanagisawa T, Yamagishi Y, Hamano Y, et al. Detailed investigation of thermal convection in a liquid metal under a horizontal magnetic field: suppression of oscillatory flow observed by velocity profiles. Phys Rev E. 2010;82(5), 056306.
  • Ning F, Cong W. Ultrasonic vibration-assisted (UV-A) manufacturing processes: state of the art and future perspectives. J Manuf Process. 2020;51:174–190.
  • Zhou S, Ma G, Dongjiang W, et al. Ultrasonic vibration assisted laser welding of nickel-based alloy and austenite stainless steel. J Manuf Process. 2018;31:759–767.
  • Zhu LD, Yang Z, Xin B, et al. Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of inconel 718. Surf Coat Technol. 2021;410:126984.
  • Shinichi K, Daisuke K, Kentaro N. A design of ultrasonic compaction tools for metal powder magnetic core of motors. In: 2008 IEEE Ultrasonics Symposium; 2008.
  • Liu H, Tan CKI, Cheng WS, et al. Effects of robotic hammer peening on structural properties of Ni-Based single-crystal superalloy: dislocation slip traces and crystallographic reorientations. Metall Mater Trans A. 2020;51(6):3180–3193.
  • Mironov S, Ozerov M, Kalinenko A, et al. On the relationship between microstructure and residual stress in laser-shock-peened Ti-6Al-4V. J Alloys Compd. 2022;900:163383.
  • Nagarajan B, Kumar D, Fan Z, et al. Effect of deep cold rolling on mechanical properties and microstructure of nickel-based superalloys. Mater Sci Eng A. 2018;728:196–207.
  • Maleki E, Unal O, Guagliano M, et al. The effects of shot peening, laser shock peening and ultrasonic nanocrystal surface modification on the fatigue strength of inconel 718. Mater Sci Eng A. 2021;810:141029.
  • Prabhakaran S, Kulkarni A, Vasanth G, et al. Laser shock peening without coating induced residual stress distribution, wettability characteristics and enhanced pitting corrosion resistance of austenitic stainless steel. Appl Surf Sci. 2018;428:17–30.
  • Zhiming L, Laimin S, Shenjin Z, et al. Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel. Mater Sci Eng A. 2015;637:170–174.
  • Sealya MP, Madireddy G, Li C, et al. Finite element modeling of hybrid additive manufacturing by laser shock; 2016.
  • Zhou X, Zhang H, Wang G, et al. Simulation of microstructure evolution during hybrid deposition and micro-rolling process. J Mater Sci. 2016;51(14):6735–6749.
  • Zhang Z, Zhao Y, Shan J, et al. The role of shot peening on liquation cracking in laser cladding of K447A nickel superalloy powders over its non-weldable cast structure. Mater Sci Eng A. 2021;823:141678.
  • Zhang XY, Li DC, Geng JL. An approach to reduce stress and defects: a hybrid process of laser cladding deposition and shot peening. RPJ. 2021;27(9):1609–1616.
  • Schulze V, Bleicher F, Groche P, et al. Surface modification by machine hammer peening and burnishing. CIRP Ann. 2016;65(2):809–832.
  • Barr C, Da Sun S, Easton M, et al. Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels. Surf Coat Technol. 2018;340:126–136.
  • Ma P, Wu Y, Zhang P, et al. Solidification prediction of laser cladding 316L by the finite element simulation. Int J Adv Manuf Technol. 2019;103(1–4):957–969.
  • Youssef D, Hassab-Elnaby S, Al-Sayed SR. New 3D model for accurate prediction of thermal and microstructure evolution of laser powder cladding of Ti6Al4V alloy. Alexandria Eng J. 2022;61(5):4137–4158.
  • Chen T, Wu W, Li W, et al. Laser cladding of nanoparticle TiC ceramic powder: effects of process parameters on the quality characteristics of the coatings and its prediction model. Opt Laser Technol. 2019;116:345–355.
  • Huang X, Liu C, Zhang H, et al. Microstructure control and friction behavior prediction of laser cladding Ni35A + TiC composite coatings. Coatings. 2020;10(8):774.
  • Wang S, Zhu L, Fuh JYH, et al. Multi-physics modeling and gaussian process regression analysis of cladding track geometry for direct energy deposition. Opt Lasers Eng. 2020;127:105950.
  • Wang S, Wang Y, Liu C, et al. In-situ monitoring on micro-hardness of laser molten zone on AISI4140 steel by spectral analysis. Sci Rep. 2020;10(1):4241.
  • Li J, Cao L, Xu J, et al. In situ porosity intelligent classification of selective laser melting based on coaxial monitoring and image processing. Measurement. 2022;187:110232.
  • Pierson K, Rahman A, Spear AD. Predicting microstructure-sensitive fatigue-crack path in 3D using a machine learning framework. JOM. 2019;71(8):2680–2694.
  • Kao I-H, Hsu Y-W, Lai YH, et al. Laser cladding quality monitoring using coaxial image based on machine learning. IEEE Trans Instrum Meas. 2020;69(6):2868–2880.
  • Zhang J, Habibnejad-korayem M, Liu Z, et al. A computer vision approach to evaluate powder flowability for metal additive manufacturing. Integr Mater Manuf Innov. 2021;10(3):429–443.
  • Makridakis S. Accuracy measures: theoretical and practical concerns. Int J Forecasting. 1993;9(4):527–529.
  • Das AK, Leung CKY, Wan KT. Application of deep convolutional neural networks for automated and rapid identification and computation of crack statistics of thin cracks in strain hardening cementitious composites (SHCCs). Cement Concrete Compos. 2021;122, 104159.
  • Ibarra-Zarate D, Alonso-Valerdi LM, Chuya-Sumba J, et al. Prediction of inconel 718 roughness with acoustic emission using convolutional neural network based regression. Int J Adv Manuf Technol. 2019;105(1–4):1609–1621.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.