430
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Enhancement of microstructure and mechanical properties of similar and dissimilar aluminium alloy by friction stir welding/processing using nanoparticles: a review

ORCID Icon, &
Pages 3125-3166 | Received 03 Jan 2023, Accepted 28 Feb 2023, Published online: 10 Mar 2023

References

  • Mabuwa S, Msomi V, Mehdi H, et al. Effect of material positioning on Si-rich TIG welded joints of AA6082 and AA8011 by friction stir processing. J Adhes Sci Technol. 2022;1–19.
  • Miller WS, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A. 2000;280(1):37–49.
  • Aluminium alloys in the automotive industry: a handy guide [Internet]. [cited 2019 May 4]. Available from: https://aluminiuminsider.com/aluminiumalloys-automotive-industry-handy-guide/.
  • Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 2014;56:862–871.
  • Aluminium in shipbuilding [Internet]. [cited 2009 Feb 11]. Available from: http://www.aluminiumindustry.org/en/aluminium-shipbuilding.html.
  • Mathers G. The welding of aluminium and its alloys. 1st ed. New York (NY) USA: Woodhead Publishing 2002.
  • Tanaka H, Minoda T. Mechanical properties of 7475 aluminium alloy sheets with fine subgrain structure by warm rolling. Trans. Nonferrous Met Soc China. 2014;24(7):2187–2195.
  • Calogero V, Costanza G, Missori S, et al. A weldability study of Al–Cu–Li 2198 alloy. Metallurgist. 2014; 571:1134–1141.
  • Lohwasser D, Chen Z. Friction stir welding: from basics to applications. Cambridge: Woodhead Publishing Limited; 2010.
  • Yi D, Onuma T, Mironov S, et al. Evaluation of heat input during friction stir welding of aluminium alloys. Sci Technol Weld Join. 2016;22: 41–6. https://doi.org/10.1080/13621718.2016.1183079.
  • Rajiv SM, Murray WM. Friction stir welding and processing. Materials Park: ASM International. 2007;1–5.
  • Dolatkhah A, Golbabaei P, Besharati Givi MK, et al. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater Des. 2012;37:458–464.
  • Barati M, Abbasi M, Abedini M. The effects of friction stir processing and friction stir vibration processing on mechanical, wear and corrosion characteristics of Al6061/SiO2 surface composite. J. Manuf. Process. 2019;45:491–497.
  • Huang C-W, Aoh J-N. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite. Materials. 2018; 11(4):599. https://doi.org/10.3390/ma11040599
  • Jain VKS, Varghese J, Muthukumaran S. Effect of first and second passes on microstructure and wear properties of titanium Dioxide-Reinforced aluminium surface composite via friction stir processing. Arab. J. Sci. Eng. 2019;44:949–957.
  • Bourkhani RD, Eivani AR, Nateghi HR. Through-thickness inhomogeneity in microstructure and tensile properties and tribological performance of friction stir processed AA1050-Al2O3 nanocomposite. Compos. Part B Eng. 2019;174:107061.
  • Zahmatkesh B, Enayati MH. A novel approach for development of surface nanocomposite by friction stir processing. Mater Sci Eng. A. 2010;527(24-25):6734–6740.
  • Prabhu MS, Perumal AE, Arulvel S, et al. Friction and wear measurements of friction stir processed aluminium alloy 6082/CaCO3 composite. Measurement. 2019;142:10–20.
  • Deore HA, Mishra J, Rao AG, et al. Effect of filler material and post process ageing treatment on microstructure, mechanical properties and wear behaviour of friction stir processed AA 7075 surface composites. Surf. Coatings Technol. 2019;374:52–64.
  • Zhang S, Chen G, Wei J, et al. Effects of energy input during friction stir processing on microstructures and mechanical properties of aluminum/carbon nanotubes nanocomposites. J. Alloys Compd. 2019;798:523–530.
  • Dinaharan I, Akinlabi ET. Low cost metal matrix composites based on aluminum, magnesium and copper reinforced with fly ash prepared using friction stir processing. Compos. Commun. 2018;9:22–26.
  • Khodabakhshi F, Arab SM, Švec P, et al. Fabrication of a new Al-Mg/graphene nanocomposite by multi-pass friction-stir processing: dispersion, microstructure, stability, and strengthening. Mater. Charact. 2017;132:92–107.
  • Abraham SJ, Dinaharan I, Selvam JDR, et al. Microstructural characterization of vanadium particles reinforced AA6063 aluminum matrix composites via friction stir processing with improved tensile strength and appreciable ductility. Compos. Commun. 2019;12:54–58.
  • Kumar S, Suganya Priyadharshini T, Shalini G, et al. R. Characterization of NbC-Reinforced AA7075 alloy composites produced using friction stir processing. Trans Indian Inst Met. 2019;72(6):1593–1596.
  • Nazari M, Eskandari H, Khodabakhshi F. Production and characterization of an advanced AA6061-Graphene-TiB2 hybrid surface nanocomposite by multi-pass friction stir processing. Surf Coatings Technol. 2019;377:124914.
  • Burek R, Wydrzyński D, Sęp J, et al. The effect of tool wear on the quality of lap joints between 7075 T6 aluminium alloy sheet metal created with the FSW method. Eksploatacja i Niezawodnosc. 2018;20(1):100–106.
  • Hashmi AW, Mehdi H, Mabuwa S, et al. Velaphi Msomi & Prabhujit Mohapatra, influence of FSP parameters on wear and microstructural characterization of dissimilar TIG welded joints with si-rich filler metal. Silicon. 2022;14(17):11131–11145.
  • Mehdi H, Mehmood A, Chinchkar A, et al. Optimization of process parameters on the mechanical properties of AA6061/Al2O3 nanocomposites fabricated by multi-pass friction stir processing. Mater Today. 2021;56(4):1995–2003.
  • Mehdi H, Mishra RS. Mechanical properties and microstructure studies in friction stir welding (FSW) joints of dissimilar alloy – a review. J Achiev Mater Manuf Eng. 2016;77(1):31–40.
  • Gaurav S, Mishra RS, Zunaid M. A critical review on mechanical and microstructural properties of dissimilar aluminium (Al)-magnesium (Mg) alloys. J Adhes Sci Technol. 2022;1–33.
  • Mehdi HRM. Consequence of reinforced SiC particles on microstructural and mechanical properties of AA6061 surface composites by multi-pass FSP. J Adhes Sci Technol. 2021.
  • Mohan DG, Gopi S. Influence of in-situ induction heated friction stir welding on tensile, microhardness, corrosion resistance and microstructural properties of martensitic steel. Eng. Res. Express. 2021;3(2):025023.
  • Anandha Kumar CJ, Gopi S, Mohan DG, et al. Predicting the ultimate tensile strength and wear rate of aluminium hybrid surface composites fabricated via friction stir processing using computational methods. J Adhes Sci Technol. 2022;36(16):1707–1726.
  • Mohan DG, Gopi S, Tomków J, et al. Assessment of corrosive behaviour and microstructure characterization of hybrid friction stir welded martensitic stainless steel. Adv Mat Sci. 2021;21(4):67–78.
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50(1-2):1–78.
  • Sun YF, Fujii H. The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints. Mater Sci Eng. 2011;528(16):5470–5475.
  • Saeidi M, Barmouz M, Givi MKB. Investigation on AA5083/AA7075 + Al2O3 joint fabricated by friction stir welding: characterizing microstructure, corrosion and toughness behavior. Mat Res. 2015;18(6):1156–1162.
  • Jamalian HM, Ramezani H, Ghobadi H, et al. Processing-structure-property correlation in nano-SiC-reinforced friction stir welded aluminum joints. J Manuf Process. 2016;21:180–189.
  • Mirjavadi SS, Alipour M, Emamian S, et al. Influence of TiO2 nanoparticles incorporation to friction stir welded 5083 aluminum alloy on the microstructure, mechanical properties and wear resistance. J Alloys Compd. 2017;712:795–803.
  • Bahrami M, Dehghani KB, Givi MK. A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique. Mater Des. 2014;53:217–225.
  • Bahrami M, Helmi N, Dehghani K, et al. Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: fatigue life, impact energy, tensile strength. Mater Sci Eng. 2014;595:173–178.
  • Bahrami M, Farahmand Nikoo M, Besharati Givi MK. Microstructural and mechanical behaviors of nano SiC reinforced AA7075-O FSW joints prepared through two passes. Mater Sci Eng. 2015;626:220–228.
  • Karthikeyan P, Mahadevan K. Investigation on the effects of SiC particle addition in the weld zone during friction stir welding of Al 6351 alloy. Int J Adv Manuf Technol. 2015;80(9-12):1919–1926.
  • Singh R, Kumar V, Feo L, et al. Experimental investigations for mechanical and metallurgical properties of friction stir welded recycled dissimilar polymer materials with metal powder reinforcement. Compos B Eng. 2016;103:90–97.
  • Abioye TE, Zuhailawati H, Anasyida AS, et al. Investigation of the microstructure, mechanical and wear properties of AA6061-T6 friction stir weldments with different particulate reinforcements addition. J Mater Res Technol. 2019;8(5):3917–3928.
  • Hashmi AW, Mehdi H, Mishra RS, et al. Mechanical properties and microstructure evolution of AA6082/sic nanocomposite processed by multi-pass FSP. Trans Indian Inst Met. 2022;75(8):2077–2090..
  • Balog M, Krizik P, Nosko M, et al. Forged HITEMAL: Al-based MMCs strengthened with nanometric thick Al2O3 skeleton. Mater Sci Eng A. 2014;613:82–90.
  • Nosko M, Stepanek M, Zifcak P, et al. Solid-state joining of powder metallurgy Al-Al2O3 nanocomposites via friction-stir welding: effects of powder particle size on the weldability, microstructure, and mechanical property. Mater Sci Eng A. 2019;754:190–204.
  • Tebyani SF, Dehghani K. Effects of SiC nanopowders on the mechanical properties and microstructure of interstitial free steel joined via friction stir spot welding. Mater Des. 2016;90:660–668.
  • Acharya U, Roy BS, Saha SC. Torque and force perspectives on particle size and its effect on mechanical property of friction stir welded AA6092/17.5SiC p -T6 composite joints. J Manuf Process. 2019;38:113–121.
  • Pantelis DI, Karakizis PN, Daniolos NM, et al. Microstructural study and mechanical properties of dissimilar friction stir welded AA5083-H111 and AA6082-T6 reinforced with SiC nanoparticles. Mater. Manuf. Process. 2016;31(3):264–274.
  • Dragatogiannis DA, Koumoulos EP, Kartsonakis IA, et al. Dissimilar friction stir welding between 5083 and 6082 Al alloys reinforced with TiC nanoparticles. Mater Manuf Process. 2016;31(16):2101–2114.
  • Scudino S, Liu G, Prashanth KG, et al. Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Mater. 2009;57(6):2029–2039.
  • Mehdi H, Mishra RS. Effect of multi-pass friction stir processing and SiC nanoparticles on microstructure and mechanical properties of AA6082-T6. Adv Indust Manuf Eng. 2021;3:100062.
  • Salah A, Mehdi H, Mehmood A, et al. Optimization of process parameters of friction stir welded joints of dissimilar aluminum alloys AA3003 and AA6061 by RSM. Mater Today. 2021;56(4):1675–1684.
  • Husain Mehdi, R.S. Mishra. Analysis of material flow and heat transfer in reverse dual rotation friction stir welding: a review. Int J Steel Struct 2019; 19(2):422–434
  • Bodaghi M, Dehghani K. Friction stir welding of AA5052: the effects of SiC nano-particles addition. Int J Adv Manuf Technol. 2017;88(9-12):2651–2660.
  • Vimalraj C, Kah P. Experimental review on friction stir welding of aluminium alloys with nanoparticles. Metals. 2021;11(3):390.
  • Rezaee Hajideh M, Farahani M, Molla Ramezani N. Reinforced dissimilar friction stir weld of polypropylene to acrylonitrile butadiene styrene with copper nanopowder. J Manuf Process. 2018;32:445–454.
  • Pouriamanesh R, Dehghani K, Vallant R. Friction stir welding of API X70 steel incorporating Ti-dioxide. Can Metall Q. 2019;58(1):69–81.
  • Zhao K, Liu Z, Xiao B, et al. Friction stir welding of carbon nanotubes reinforced Al-Cu-Mg alloy composite plates. J Mater Sci Technol. 2017;33(9):1004–1008.
  • Montazerian MH, Movahedi M, Jondi MR. Effect of graphene and process parameters on mechanical performance and electrical resistance of aluminum to copper friction stir joint. Mater. Res. Express. 2019;6(4):046561.
  • Jayabalakrishnan D, Balasubramanian M. Eccentric-weave FSW between Cu and AA 6061-T6 with reinforced graphene nanoparticles. Mater Manuf Process. 2018;33(3):333–342.
  • Inada K, Fujii H, Ji YS, et al. Effect of gap on FSW joint formation and development of friction powder processing. Sci Technol Weld Join. 2010;15(2):131–136.
  • Kurmanaeva L, Topping TD, Wen H, et al. Strengthening mechanisms and deformation behavior of cryomilled Al-Cu-Mg-Ag alloy. J Alloys Compd. 2015;632:591–603.
  • Lavernia EJ, Han BQ, Schoenung JM. Cryomilled nanostructured materials: processing and properties. Mater Sci Eng. 2008;493(1-2):207–214.
  • Rohrer GS. Introduction to grains, phases, and interfaces-an interpretation of microstructure. Trans AIME. 1948;175:15–51.
  • Phaneesh KR, Bhat A, Mukherjee P, et al. On the Zener limit of grain growth through 2D Monte Carlo simulation. Comput Mater Sci. 2012;58:188–191.
  • Sharma V, Prakash U, Kumar BVM. Surface composites by friction stir processing: a review. J Mater Process Technol. 2015;224:117–134.
  • Singh T, Tiwari SK, Shukla DK. Effects of Al2O3 nanoparticles volume fractions on microstructural and mechanical characteristics of friction stir welded nanocomposites. Nanocomposites. 2020;6(2):76–84.
  • Mohammed S, Birru AK. Friction stir welding of AA6082 thin aluminium alloy reinforced with Al2O3 nanoparticles. Trans Indian Ceram Soc. 2019;78(3):137–145.
  • Gandra J, Miranda R, Vilaça P, et al. Functionally graded materials produced by friction stir processing. J Mater Processing Technol. 2011;211(11):1659–1668.
  • Karakizis PN, Pantelis DI, Fourlaris G, et al. The role of SiC and TiC nanoparticle reinforcement on AA5083-H111 friction stir welds studied by electron microscopy and mechanical testing. Int J Adv Manuf Technol. 2018;94(9-12):4159–4176.
  • Mirjavadi SS, Alipour M, Hamouda AMS, et al. Effect of multi-pass friction stir processing on the microstructure, mechanical and wear properties of AA5083/ZrO2 nanocomposites. J Alloys Compd. 2017;726:1262–1273.
  • Kartsonakis IA, Dragatogiannis DA, Koumoulos EP, et al. Corrosion behaviour of dissimilar friction stir welded aluminium alloys reinforced with nanoadditives. Mater Des. 2016;102:56–67.
  • Palani K, Elanchezhian C, Saiprakash KHV, et al. Effect of welding parameters on mechanical properties of dissimilar friction stir processed AA 8011 and AA 5083-H321 aluminium alloys. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Tamilnadu, India; 2018.
  • Li H, Qiao Y, Lu S, et al. Study on microstructure evolution and strengthening and toughening of friction stir processed AA6082-4%Al3Zr in-Situ composites. J Materi Eng Perform. 2022;31(7):5221–5230.
  • Karakizis PN, Pantelis DI, Fourlaris G, et al. Effect of SiC and TiC nanoparticle reinforcement on the microstructure, microhardness, and tensile performance of AA6082-T6 friction stir welds. Int J Adv Manuf Technol. 2018;95(9–12):3823–3837.
  • Suresh S, Venkatesan K, Natarajan E. Influence of SiC nanoparticle reinforcement on FSS welded 6061-T6 aluminum alloy. J Nanomater. 2018;2018:1–11.
  • Maitra, Saikat, and Jagannath Roy. Nanoceramic matrix composites: types, processing, and applications. Advances in ceramic matrix composites (2018): 27–48. Woodhead Publishing Series in Composites Science and Engineering.
  • Park SJ, Seo MK. Types of Composites 2011; Interface Science and Technology, 18:501–629. https://doi.org/10.1016/B978-0-12-375049-5.00007-4.
  • Mehdi H, Mishra RS. Modification of microstructure and mechanical properties of AA6082/ZrB2 processed by multipass friction stir processing. J Mat Eng Perf. 2022;.
  • Mehdi H, Mishra RS. Investigation of mechanical properties and heat transfer of welded joint of AA6061 and AA7075 using TIG + FSP welding approach. J Adv Join Proc. 2020;1:100003.
  • Geim AK, Novoselov KS. The rise of graphene. Nature Mater. 2007;6(3):183–e191.
  • Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363(6430):603–605.
  • Baig Z, Mamat O, Mustapha M. Recent progress on the dispersion and the strengthening effect of carbon, nanotubes and graphene-reinforced metal nanocomposites: a review. Crit Rev Solid State Mater Sci. 2018;43(1):1–46.
  • Maurya R, Kumar B, Ariharan S, et al. Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy. Mater Des. 2016;98:155–166.
  • Jeon CH, Jeong YH, Seo JJ, et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int J Precis Eng Manuf. 2014;15(6):1235–1239.
  • Khodabakhshi F, Nosko M, Gerlich AP. Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing. Surf Coating Technol. 2018;335:288–305.
  • Tjong S. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater. 2007;9(8):639–652.
  • Mehdi H, Mishra RS. Study of the influence of friction stir processing on tungsten inert gas welding of different aluminum alloy. SN Appl. Sci. 2019;1(7):712.
  • Mehdi H, Mishra RS. Effect of friction stir processing on mechanical properties and heat transfer of TIG welded joint of AA6061 and AA7075. Defence Technol. 2021;17(3):715–727.
  • Cary HB, Helzer SC. Modern welding technology. Upper New Jersey River (NJ) USA: Pearson/Prentice Hall; 2005.
  • Sielski RA. Review of structural design of aluminum ships and craft. Trans Soc Nav Archit Mar Eng. 2007;115:1–30.
  • Klobcar D, Kosec L, Pietras A, et al. Friction-stir welding of aluminium alloy 5083. Mater Technol. 2012;46:483–488.
  • Bauri R, Yadav D. Metal matrix composites by friction stir processing. Amsterdam, The Netherlands: Elsevier; 2017.
  • Papantoniou IG, Markopoulos AP, Manolakos DE. A new approach in surface modification and surface hardening of aluminium alloys using friction stir process: Cu-reinforced AA5083. Materials. 2020;13(6):1278.
  • Mehdi H, Mishra RS. Effect of friction stir processing on microstructure and mechanical properties of TIG welded joint of AA6061 and AA7075. Metallogr Microstruct. Anal. 2020;9(3):403–418.
  • Elangovan K, Balasubramanian V, Valliappan M. Effect of tool pin profile and tool rotational speed on mechanical properties of friction stir welded AA6061 aluminium alloy. Mater Manuf. Process. 2008;23(3):251–260.
  • Ceschini L, Boromei I, Minak G, et al. Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol. %Al2O3p composite. Compos Sci Technol. 2007;67(3-4):605–615.
  • Paik JK. Mechanical properties of friction stir welded aluminium alloys 5083 and 5383. Int J Nav Archit Ocean Eng. 2009;1:39–49.
  • Jata KV, Sankaran KK, Ruschau JJ. Friction-stir welding effects on microstructure and fatigue of aluminium alloy 7050-T7451. Metall Mat Trans A. 2000;31(9):2181–2192.
  • Shahraki S, Khorasani S, Abdi Behnagh R, et al. Producing AA5083/ZrO2 nanocomposite by friction stir processing (FSP). Metall and Materi Trans B. 2013;44(6):1546–1553.
  • Mehdi H, Mabuwa S, Msomi V, et al. Influence of friction stir processing on the mechanical and microstructure characterization of single and double V-groove tungsten inert gas welded dissimilar aluminium joints. J Materi Eng Perform. 2022;.
  • Vimalraj C, Kah P, Mvola B, et al. Effect of nanomaterial addition using gmaw and gtaw processes. Rev Adv Mater Sci. 2016;44:370–382.
  • Hoseinlaghab S, Mirjavadi SS, Sadeghian N, et al. Influences of welding parameters on the quality and creep properties of friction stir welded polyethylene plates. Mater Des. 2015;67:369–378.
  • Avettand-Fenoel M, Simar A, Shabadi R, et al. Characterization of oxide dispersion strengthened copper-based materials developed by friction stir processing. Mate. Des. 2014;60:343–357.
  • Scialpi A, De Filippis LAC, Cavaliere P. Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Mater. Des. 2007;28(4):1124–1129.
  • Thimmaraju P, Arkanti K, Reddy GC, et al. Comparison of microstructure and mechanical properties of friction stir welding of al 6082aluminium alloy with different tool profiles. Mater. Today Proc. 2016;3(10):4173–4181.
  • Pantelis DI, Karkizis PN, Dragatogiannis DA, et al. Dissimilar friction stir welding of aluminium alloys reinforced with carbon nanotubes. Nanom Join. 2016, 1(1):20150010. https://doi.org/10.1515/psr-2015-0010
  • Cavaliere P, Squillace A, Panella F. Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding. J. Mater. Process. Technol. 2008;200(1-3):364–372.
  • Singh SK, Rashid M, Kumar D, et al. Micro structural and mechanical behaviours of Nano-TiC-Reinforced AA6082 FSW joints. Int J Trend Res Dev. 2016;3:179–182.
  • Mehdi H, Mishra RS. Influence of friction stir processing on weld temperature distribution and mechanical properties of TIG-welded joint of AA6061 and AA7075. Trans Indian Inst Met. 2020;73(7):1773–1788.
  • Pityana S. Microstructures of alloyed and dispersed hard particles in the aluminium surface. In Proceedings of the 4th Pacific International Conference on Applications of Lasers and Optics (PICALO), Wuhan, China, 23 March 2010.
  • Jannet S, Mathews K, Raja R. Comparative investigation of friction stir welding and fusion welding of 6061 T6-5083 O aluminium alloy based on mechanical properties and microstructure. Bull Pol Acad Sci Tech Sci. 2014;62:791–795.
  • Mehdi H, Mishra RS. An experimental analysis and optimization of process parameters of AA6061 and AA7075 welded joint by TIG + FSP welding using RSM. Adv Mat Proces Technol. 2022;8(1):598–620.
  • Peel MJ, Steuwer A, Withers PJ, et al. Dissimilar friction stir welds in AA5083-AA6082. PartI: process parameter effects on thermal history and weld properties. Metall Mater Trans A Phys Metall Mater Sci. 2006;37:2183–2193.
  • Ji SD, Shi Q, Zhang LG, et al. Numerical simulation of material flow behavior of friction stir welding influenced by rotational tool geometry. Comput Mater Sci. 2012;63:218–226.
  • Reynolds AP, Lockwood WD, Seidel TU. Processing-property correlation in friction stir welds. Mater Sci Forum. 2000;331: III.
  • Salah AN, Mabuwa S, Mehdi H, et al. Effect of multipass FSP on Si-rich TIG welded joint of dissimilar aluminium alloys AA8011-H14 and AA5083-H321: EBSD and microstructural evolutions. Silicon. 2022;14(15):9925–9941.
  • Mehdi H, Mishra RS. Effect of friction stir processing on mechanical properties and wear resistance of tungsten inert gas welded joint of dissimilar aluminum alloys. J. of Materi Eng and Perform. 2021;30(3)volume:1926–1937.
  • Jafari H, Mansouri H, Honarpisheh M. Investigation of residual stress distribution of dissimilar Al-7075-T6 and Al-6061-T6 the friction stir welding process strengthened with SiO2 nanoparticles. J Manuf Process. 2019;43:145–153.
  • Mehdi H, Mishra RS. Microstructure and mechanical characterization of tungsten inert gas-welded joint of AA6061 and AA7075 by friction stir processing. J Mat. 2021;235(11):2531–2546.
  • Lee S, Shin SE, Sun Y, et al. Friction stir welding of multi-walled carbon nanotubes reinforced Al matrix composites. Mater Charact. 2018;145:653–663.
  • Nait Salah A, Kaddami M, Mehdi H. Mechanical properties and microstructure characterization of friction stir welded joint of dissimilar aluminium alloy AA2024 and AA7050. TURCOMAT. 2021;12(7):1051–1061.
  • Peel MJ, Steuwer A, Withers PJ. Dissimilar friction stir welds in AA5083-AA6082. Part II: process parameter effects on microstructure. Metall Mat Trans A. 2006;37(7):2195–2206.
  • Sasikumar A, Gopi S, Mohan, DG. Forecasting process parameters on weld nugget hardness of filler added friction stir welded dissimilar aluminium alloys 5052 and 6082 joints. J Mechanical Energy Engineer. 2021;5(2):103–112.
  • Sasikumar A, Gopi S, Mohan DG Prediction of filler added friction stir welding parameters for improving corrosion resistance of dissimilar aluminium alloys 5052 and 6082 joints. Adv Mat Sci. 2022;22(3):79–95.
  • Gopi S, Dhanesh M. G evaluating the welding pulses of various tool profiles in Single-Pass friction stir welding of 6082-T6 aluminium alloy. J Weld Join. 2021;39(3):284–294.
  • Mohan DG, Tomków J, Gopi S. Induction assisted hybrid friction stir welding of dissimilar materials AA5052 aluminium alloy and X12Cr13 stainless steel. Adv Mat Sci. 2021;21(3):17–30.
  • Mohan DG, Wu C. A review on friction stir welding of steels. Chin J Mech. Eng. 2021;34(1):137.
  • Meng X, Huang Y, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding. Prog Mat Sci. 2020;
  • He X, Gu F, Ball A. A review of numerical analysis of friction stir welding. Prog Mater Sci. 2014;65:1–66.
  • Nandan R, DebRoy T, Bhadeshia H. Recent advances in friction-stir welding – process, weldment structure, and properties. Prog Mater Sci. 2008;53(6):980–1023.
  • Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Prog Mater Sci. 2021;117:100752.
  • Raja S, Muhamad MR, Jamaludin MF, et al. A review on nanomaterials reinforcement in friction stir welding. J Mater Res Technol. 2020;9(6):16459–16487.
  • Khaled T. An outsider looks at friction stir welding. Washington (DC) USA: Federal Aviation Administration; 2005. pp. 1–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.