219
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Enhancement of mechanical and thermal properties of poly methyl methacrylate composite bone cements with zinc oxide nanostructures modified carbon fibres additives

ORCID Icon & ORCID Icon
Pages 2729-2753 | Received 26 Dec 2022, Accepted 24 Jun 2023, Published online: 19 Jul 2023

References

  • Zeng C, Hossieny N, Zhang C, et al. Morphology and tensile properties of PMMA carbon nanotubes nanocomposites and nanocomposites foams. Compos Sci Technol. 2013;82:29–37. doi: 10.1016/j.compscitech.2013.03.024.
  • Magnan B, Bondi M, Maluta T, et al. Acrylic bone cement: current concept review. Musculoskelet Surg. 2013;97(2):93–100. doi: 10.1007/s12306-013-0293-9.
  • Rojas LMR, Zapata MEV, Suarez MG, et al. Optimization of mechanical and setting properties in acrylic bone cements added with graphene oxide. Appl Sci. 2021;11:5185. Available from: https://www.mdpi.com/2076-3417/11/11/5185.
  • Yamamuro T, Nakamura T, Iida H, et al. Development of bioactive bone cement and its clinical applications. Biomaterials. 1998;19(16):1479–1482. doi: 10.1016/s0142-9612(98)00062-3.
  • Soleymani Eil Bakhtiari S, Bakhsheshi-Rad HR, Karbasi S, et al. Poly(methyl methacrylate) bone cement, its rise, growth, downfall and future. Polym Int. 2021;70(9):1182–1201. doi: 10.1002/pi.6136.
  • Pahlevanzadeh F, Bakhsheshi-Rad HR, Kharaziha M, et al. CNT and rGO reinforced PMMA based bone cement for fixation of load bearing implants: mechanical property and biological response. J Mech Behav Biomed Mater. 2021;116:104320. doi: 10.1016/j.jmbbm.2021.104320.
  • Puska MA, Lassila LV, Närhi TO, et al. Improvement of mechanical properties of oligomer-modified acrylic bone cement with glass-fibers. Appl Compos Mater. 2004;11, 17–31. doi: 10.1023/B:ACMA.0000003971.09042.e6
  • Zhu J, Yang S, Cai K, et al. Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures. Theranostics. 2020;10(14):6544–6560. doi: 10.7150/thno.44428.
  • Ormsby R, McNally T, Mitchell C, et al. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: effects on mechanical and thermal properties. J Mech Behav Biomed Mater. 2010;3(2):136–145. doi: 10.1016/j.jmbbm.2009.10.002.
  • Ormsby R, McNally T, O'Hare P, et al. Fatigue and biocompatibility properties of a poly(methyl methacrylate) bone cement with multi-walled carbon nanotubes. Acta Biomater. 2012;8(3):1201–1212. doi: 10.1016/j.actbio.2011.10.010.
  • Hill J, Orr J, Dunne N. In vitro study investigating the mechanical properties of acrylic bone cement containing calcium carbonate nanoparticles. J Mater Sci Mater Med. 2008;19(11):3327–3333. doi: 10.1007/s10856-008-3465-7.
  • Slane J, Vivanco J, Meyer J, et al. Modification of acrylic bone cement with mesoporous silica nanoparticles: effects on mechanical, fatigue and absorption properties. J Mech Behav Biomed Mater. 2014;29:451–461. doi: 10.1016/j.jmbbm.2013.10.008.
  • Serbetci K, Korkusuz F, Hasirci N. Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements. Polym Test. 2004;23(2):145–155. doi: 10.1016/S0142-9418(03)00073-4.
  • Saha S, Pal S. Mechanical characterization of commercially made carbon‐fiber‐reinforced polymethylmethacrylate. J Biomed Mater Res. 1986;20(6):817–826. doi: 10.1002/jbm.820200612.
  • Sharma M, Gao S, Mäder E, et al. Carbon fiber surfaces and composite interphases. Compos Sci Technol. 2014;102:35–50. doi: 10.1016/j.compscitech.2014.07.005.
  • Newman B, Creighton C, Henderson LC, et al. A review of milled carbon fibres in composite materials. Compos Part A Appl Sci Manuf. 2022;163:107249. doi: 10.1016/j.compositesa.2022.107249.
  • Zhao P, Sun K, Zhu G. Composites of carbon fibers reinforced calcium phosphate bone cement. Kuei Suan Jen Hsueh Pao/J Chinese Ceram Soc. 2005;:33(1)
  • Boehm A, Meininger S, Tesch A, et al. The mechanical properties of biocompatible apatite bone cement reinforced with chemically activated carbon fibers. Materials (Basel). 2018;11(2):192. doi: 10.3390/ma11020192.
  • Shiba K, Tagaya M, Samitsu S, et al. Effective surface functionalization of carbon fibers for fiber/polymer composites with tailor-made interfaces. Chempluschem [Internet]. 2014;79(2):197–210. doi: 10.1002/cplu.201300356.
  • Wu M-S, Guo Z-S, Jow J-J. Highly regulated electrodeposition of needle-like manganese oxide nanofibers on carbon fiber fabric for electrochemical capacitors. J. Phys. Chem. C. 2010;114(49):21861–21867. doi: 10.1021/jp108598q.
  • Lin Y, Ehlert G, Sodano HA. Increased interface strength in carbon fiber composites through a ZnO nanowire interphase. Adv. Funct. Mater. 2009;19(16):2654–2660. doi: 10.1002/adfm.200900011.
  • Wang Y, Baheti V, Yang K, et al. Utility of whiskerized carbon fabric surfaces in resistive heating of composites. Polym Compos. 2021;42(6):2774–2786. doi: 10.1002/pc.26012.
  • Xu W, Dai S, Liu G, et al. CuO nanoflowers growing on carbon fiber fabric for flexible High-Performance supercapacitors. Electrochim Acta. 2016;203:1–8. doi: 10.1016/j.electacta.2016.03.170.
  • Liu G, Xu C, Chen H, et al. Electroless deposition method for silver‐coated carbon fibres. Micro Amp; Nano Letters. 2015;10(6):315–317. doi: 10.1049/mnl.2014.0620.
  • Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl. 2018;2018:1062562. doi: 10.1155/2018/1062562.
  • Haque MJ, Bellah MM, Hassan MR, et al. Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Ex. 2020;1(1):010007. doi: 10.1088/2632-959X/ab7a43.
  • Drzal LT, Sugiura N, Hook D. The role of chemical bonding and surface topography in adhesion between carbon fibers and epoxy matrices. Compos Interfaces. 1996;4(5):337–354. Available from. doi: 10.1163/156855497X00073.
  • Almehizia AA, Al-Omar MA, Naglah AM, et al. Facile synthesis and characterization of ZnO nanoparticles for studying their biological activities and photocatalytic degradation properties toward methylene blue dye. Alexandria Eng J. 2022;61(3):2386–2395. doi: 10.1016/j.aej.2021.06.102.
  • Gong B, Peng Q, Na JS, et al. Highly active photocatalytic ZnO nanocrystalline rods supported on polymer fiber mats: synthesis using atomic layer deposition and hydrothermal crystal growth. Appl Catal A Gen. 2011;407(1-2):211–216. doi: 10.1016/j.apcata.2011.08.041.
  • Ko YH, Ramana DK, Yu JS. Electrochemical synthesis of ZnO branched submicrorods on carbon fibers and their feasibility for environmental applications. Nanoscale Res Lett. 2013 Jun 3;8(1):262. doi: 10.1186/1556-276X-8-262. PMID: 23724865; PMCID: PMC3689163.
  • Aykaç A, Tunç ID, Güneş F, et al. Sensitive pH measurement using EGFET pH-microsensor based on ZnO nanowire functionalized carbon-fibers. Nanotechnology. 2021;32(36):365501. doi: 10.1088/1361-6528/ac0666.
  • Eixenberger JE, Anders CB, Wada K, et al. Defect engineering of ZnO nanoparticles for bioimaging applications. ACS Appl Mater Interfaces. 2019;11(28):24933–24944. doi: 10.1021/acsami.9b01582.
  • Boroujeni AY, Al-Haik M, Emami A, et al. Hybrid ZnO nanorod grafted carbon fiber reinforced polymer composites; randomly versus radially aligned long ZnO nanorods growth. j Nanosci Nanotechnol. 2018;18(6):4182–4188. doi: 10.1166/jnn.2018.15042.
  • Aykaç A, Akkaş EÖ. Synthesis, characterization, and antibacterial properties of ZnO nanostructures functionalized flexible carbon fibers. NANOTEC. 2023;17(2):119–130. doi: 10.2174/1872210516666220414103629.
  • Calestani D, Culiolo M, Villani M, et al. Functionalization of carbon fiber tows with ZnO nanorods for stress sensor integration in smart composite materials. Nanotechnology. 2018;29(33):335501. doi: 10.1088/1361-6528/aac850.
  • Vaishya R, Chauhan M, Vaish A. Bone cement. J Clin Orthop Trauma. 2013;4(4):157–163. doi: 10.1016/j.jcot.2013.11.005.
  • Pahlevanzadeh F, Bakhsheshi-Rad HR, Ismail AF, et al. Development of PMMA-Mon-CNT bone cement with superior mechanical properties and favorable biological properties for use in bone-defect treatment. Mater Lett. 2019;240:9–12. doi: 10.1016/j.matlet.2018.12.049.
  • Wekwejt M, Michalska-Sionkowska M, Bartmański M, et al. Influence of several biodegradable components added to pure and nanosilver-doped PMMA bone cements on its biological and mechanical properties. Mater Sci Eng C. 2020;117:111286. doi: 10.1016/j.msec.2020.111286.
  • Al-Janabi SK, Al-Maamori MH, Braihi AJ. Developing of PMMA bone cement performance by modified TiO 2 NPs. IOP Conf Ser: Mater Sci Eng. 2021;1094(1):012150. doi: 10.1088/1757-899X/1094/1/012150.
  • Wang R, Tao J, Yu B, et al. Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. J Prosthet Dent. 2014;111(4):318–326. doi: 10.1016/j.prosdent.2013.07.017.
  • Ormsby R, McNally T, Mitchell C, et al. Influence of multiwall carbon nanotube functionality and loading on mechanical properties of PMMA/MWCNT bone cements. J Mater Sci: Mater Med. 2010;21(8):2287–2292. doi: 10.1007/s10856-009-3960-5.
  • Al-Harbi FA, Abdel-Halim MS, Gad MM, et al. Effect of nanodiamond addition on flexural strength, impact strength, and surface roughness of PMMA denture base. J Prosthodont. 2019;28(1):e417–e425. doi: 10.1111/jopr.12969.
  • Paz E, Forriol F, del Real JC, et al. Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications. Mater Sci Eng C. 2017;77:1003–1011. doi: 10.1016/j.msec.2017.03.269.
  • Banks-Sills L, Shiber DG, Fourman V, et al. Experimental determination of mechanical properties of PMMA reinforced with functionalized CNTs. Compos Part B Eng. 2016;95:335–345. doi: 10.1016/j.compositesb.2016.04.015.
  • Pal K. Effect of different nanofillers on mechanical and dynamic behavior of PMMA based nanocomposites. Compos Commun. 2016;1:25–28. doi: 10.1016/j.coco.2016.08.001.
  • Akkaş EÖ, Aykaç A. A study on improvement of mechanical properties of bone cement with ZnO functionalized carbon fiber derivatives. 3rd Int Students Sci Symp. 2019;569–572.
  • ISO 5833:2002. Implants for surgery—acrylic resin cements. ISO: Geneva, Switzerland, 2002.
  • Suggs AE, Dolez PI, Love BJ. Adaptation of acrylic photopolymerized resins as model bone cements in total hip arthroplasties. J Adhes Sci Technol. 2004;18(10):1091–1101. doi: 10.1163/1568561041581315.
  • Paz E, Ballesteros Y, Abenojar J, et al. Advanced g-mps-pmma bone cements: influence of graphene silanisation on fatigue performance, thermal properties and biocompatibility. Nanomaterials. 2021;11(1):139. doi: 10.3390/nano11010139.
  • Sezavar A, Zebarjad S, Sajjadi S. A study on the effect of nano alumina particles on fracture behavior of PMMA. Technologies. 2015;3(2):94–102. doi: 10.3390/technologies3020094.
  • Thomas P, Ernest Ravindran RS, Varma KBR. Structural, thermal and electrical properties of poly(methyl methacrylate)/CaCu3Ti4O12 composite sheets fabricated via melt mixing. J Therm Anal Calorim. 2014;115(2):1311–1319. doi: 10.1007/s10973-013-3500-x.
  • Aziz SB, Abdullah OG, Brza MA, et al. Effect of carbon nano-dots (CNDs) on structural and optical properties of PMMA polymer composite. Results Phys. 2019;15:102776. doi: 10.1016/j.rinp.2019.102776.
  • Raja K, Ramesh PS, Geetha D. Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. Spectrochim Acta A Mol Biomol Spectrosc. 2014;131:183–188. doi: 10.1016/j.saa.2014.03.047.
  • Sa K, Mahakul PC, Subramanyam BVRS, et al. Effect of reduced graphene oxide-carbon nanotubes hybrid nanofillers in mechanical properties of polymer nanocomposites. IOP Conf Ser: Mater Sci Eng. 2018;338:012055. doi: 10.1088/1757-899X/338/1/012055.
  • Li Z, Deng L, Kinloch IA, et al. Raman spectroscopy of carbon materials and their composites: graphene, nanotubes and fibres. Prog Mater Sci. 2023;135:101089. doi: 10.1016/j.pmatsci.2023.101089.
  • Di Mauro A, Farrugia C, Abela S, et al. Synthesis of ZnO/PMMA nanocomposite by low-temperature atomic layer deposition for possible photocatalysis applications. Mater Sci Semicond Process. 2020;118:105214. doi: 10.1016/j.mssp.2020.105214.
  • Przesławski G, Szcześniak K, Gajewski P, et al. Influence of initiator concentration on the polymerization course of methacrylate bone cement. Polymers. 2022;14(22):5005. doi: 10.3390/polym14225005.
  • Bakhtiari SSE, Bakhsheshi-Rad HR, Karbasi S, et al. Polymethyl methacrylate-based bone cements containing carbon nanotubes and graphene oxide: an overview of physical, mechanical, and biological properties. Polymers. 2020; 12(7):1469. doi: 10.3390/polym12071469
  • Prado AR, Leal-Junior AG, Marques C, et al. Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems. Opt Express. 2017;25(24):30051. doi: 10.1364/OE.25.030051.
  • Peterson JD, Vyazovkin S, Wight CA. Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate). J Phys Chem B. 1999;103(38):8087–8092. doi: 10.1021/jp991582d.
  • Nikolaidis AK, Achilias DS. Thermal degradation kinetics and viscoelastic behavior of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites prepared via in situ bulk radical polymerization. Polymers. 2018;10(5):491. doi: 10.3390/polym10050491.
  • Gałka P, Kowalonek J, Kaczmarek H. Thermogravimetric analysis of thermal stability of poly(methyl methacrylate) films modified with photoinitiators. J Therm Anal Calorim. 2014;115(2):1387–1394. doi: 10.1007/s10973-013-3446-z.
  • Manring LE. Thermal degradation of poly(methyl methacrylate). 4. Random side-group scission. Macromolecules. 1991;24(11):3304–3309. doi: 10.1021/ma00011a040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.