817
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Formulation, structure and properties of waterborne polyurethane coatings: a brief review

, , &
Pages 489-516 | Received 03 Jun 2022, Accepted 16 Jul 2023, Published online: 30 Jul 2023

References

  • Pathan S, Ahmad S. Synergistic effects of linseed oil based waterborne alkyd and 3-Isocynatopropyl triethoxysilane: highly transparent, mechanically robust, thermally stable, hydrophobic, anticorrosive coatings. ACS Sustainable Chem. Eng. 2016;4(6):3062–3075. doi: 10.1021/acssuschemeng.6b00024.
  • Sharmin E, Zafar F, Akram D, et al. Recent advances in vegetable oils based environment friendly coatings: a review. Ind Crops Prod. 2015;76:215–229. doi: 10.1016/j.indcrop.2015.06.022.
  • Martinez M, Gámez E, Bellotti N, et al. Alkyd based water-reducible anticorrosive paints and their antifungal potential. Prog Org Coat. 2021;152:106069. doi: 10.1016/j.porgcoat.2020.106069.
  • Dai J, Fan X, Yu J, et al. Study on the rapid method to predict longevity of controlled release fertilizer coated by water soluble resin. Agric Sci China. 2008;7(9):1127–1132. doi: 10.1016/S1671-2927(08)60155-8.
  • Natu AM, Van De Mark MR. Synthesis and characterization of an acid catalyst for acrylic-melamine resin systems based on colloidal unimolecular polymer (CUP) particles of MMA-AMPS. Prog Org Coat. 2015;81:35–46. doi: 10.1016/j.porgcoat.2014.12.008.
  • Huo S, Zhou HY, Wang JX. Preparation and photochemical properties of PEG based alpha-hydroxyalkylphenone photoinitiator. React Funct Polym. 2021;163:104892. doi: 10.1016/j.reactfunctpolym.2021.104892.
  • PETER T. ELLIOTT, J. EDWARD GLASS, WATER-BORN COATINGS, Editor(s): Clara D. Craver, Charles E. Carraher, Applied Polymer Science: 21st Century, Pergamon, 2000, Pages 563-588, ISBN 9780080434179.
  • Vu TV, Nguyen TV, Tabish M, et al. Water-borne ZnO/acrylic nanocoating: fabrication, characterization, and properties. Polymer. 2021;13(5):717. doi: 10.3390/polym13050717.
  • Rahman MM, do Kim H. Waterborne polyurethane/oil fly ash composite: a new environmentally friendly coating material. J Adhes Sci Technol. 2015;29(24):2709–2718. doi: 10.1080/01694243.2015.1087252.
  • Zafar F, Ghosal A, Sharmin E, et al. A review on cleaner production of polymeric and nanocomposite coatings based on waterborne polyurethane dispersions from seed oils. Prog Org Coat. 2019;131:259–275. doi: 10.1016/j.porgcoat.2019.02.014.
  • Martin PM. Handbook of deposition technologies for films and coatings - science, applications, and technology. Third Edition. Elsevier: Boston; 2010. doi: 10.1016/B978-0-8155-2031-3.00019-3.
  • Pérez-Limiñana MA, Arán-Aís F, Torró-Palau AM, et al. Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. Int J Adhes Adhes. 2005;25(6):507–517. doi: 10.1016/j.ijadhadh.2005.02.002.
  • Feng Q, Chen G, Liang J. The preparation method of nonionic waterborne polyurethane. MMC_C. 2018;79(4):222–228. doi: 10.18280/mmc_c.790413.
  • Yang X, Ren B, Ren Z, et al. Synthesis and properties of novel non-ionic polyurethane dispersion based on hydroxylated tung oil and alicyclic isocyanates. MSCE. 2015;03(01):88–94. doi: 10.4236/msce.2015.31013.
  • Santamaria-Echart A, Fernandes I, Barreiro F, et al. Advances in waterborne polyurethane and polyurethane-urea dispersions and their eco-friendly derivatives: a review. Polymers. 2021;13:409. doi: 10.3390/polym13030409.
  • Pérez-Limiñana MÁ, Arán-Aís F, Torró-Palau AM, et al. Structure and properties of waterborne polyurethane adhesives obtained by different methods. J Adhes Sci Technol. 2006;20(6):519–536. doi: 10.1163/156856106777213320.
  • Madbouly SA, Otaigbe JU. Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Prog Polym Sci. 2009;34(12):1283–1332. doi: 10.1016/j.progpolymsci.2009.08.002.
  • Hormaiztegui MEV, Mucci VL, Santamaria-Echart A, et al. Waterborne polyurethane nanocomposites based on vegetable oil and microfibrillated cellulose. J. Appl. Polym. Sci. 2016;133:44207(1 of 12). doi: 10.1002/app.44207.
  • Patel RH, Kapatel PM. Studies on influence of the size of waterborne polyurethane nanoparticles on coating performance. Mater Today Proc. 2019;18:1548–1555. doi: 10.1016/j.matpr.2019.06.625.
  • Haponiuk JT, Formela K, Thomas S, et al. PU polymers, their composites, and nanocomposites: state of the art and new challenges. In Sabu Thomas, Janusz Datta, Józef T. Haponiuk, Arunima Reghunadhan (Eds.), Polyurethane polymers: composites and nanocomposites. Elsevier: Amsterdam; 2017. doi: 10.1016/B978-0-12-804065-2.00001-2.
  • Nanda A, Wicks D. The influence of the ionic concentration, concentration of the polymer, degree of neutralization and chain extension on aqueous polyurethane dispersions prepared by the acetone process. Polymer. 2006;47(6):1805–1811. doi: 10.1016/j.polymer.2006.01.074.
  • Hu L, Pu Z, Zhong Y, et al. Effect of different carboxylic acid group contents on microstructure and properties of waterborne polyurethane dispersions. J Polym Res. 2020;27(5):1–9. doi: 10.1007/s10965-020-02125-1.
  • Ma H, Liu Y, Guo J, et al. Synthesis of a novel silica modified environmentally friendly waterborne polyurethane matting coating. Prog Org Coat. 2020;139:105441. doi: 10.1016/j.porgcoat.2019.105441.
  • Athawale VD, Kulkarni MA. Polyester polyols for waterborne polyurethanes and hybrid dispersions. Prog Org Coat. 2010;67(1):44–54. doi: 10.1016/j.porgcoat.2009.09.015.
  • Sukhawipat N, Saetung N, Pilard J-F, et al. Effects of molecular weight of hydroxyl telechelic natural rubber on novel cationic waterborne polyurethane: a new approach to water-based adhesives for leather applications. Int J Adhes Adhes. 2020;99:102593. doi: 10.1016/j.ijadhadh.2020.102593.
  • Ionescu M. Chemistry and technology of polyols for polyurethanes., 2nd ed. Shrewsbury, Shropshire UK: Smithers Rapra Technology Ltd, ; 2016.
  • Meier-Westhues H-U, Danielmeier K, Kruppa P, et al. Polyurethanes: coatings adhesives and sealants., 2nd ed. Hanover: Vincentz Network GmbH & Co. KG; , 2019.
  • Bhattarai S, Il Lee S, Lee DS, et al. Effect of molecular weight of poly(tetramethylene glycol) on waterborne polyurethane dispersion coating gloss. Bull. Korean Chem. Soc. 2019;40(10):1046–1049. doi: 10.1002/bkcs.11864.
  • Rahman MM, Kim H-D. Characterization of waterborne polyurethane adhesives containing different soft segments. J Adhes Sci Technol. 2007;21(1):81–96. doi: 10.1163/156856107779976088.
  • Mehravar S, Ballard N, Tomovska R, et al. Polyurethane/acrylic hybrid waterborne dispersions: synthesis, properties and applications. Ind. Eng. Chem. Res. 2019;58(46):20902–20922. doi: 10.1021/acs.iecr.9b02324.
  • Echart AS. Synthesis and characterization of waterborne polyurethane and polyurethane-urea towards eco-friendly materials by cellulose nanocrystals and plant extracts incorporation. Ph.D., universidad del país vasco. The University of Basque Country, San Sebastian, Spain, 2017.
  • Chen S-Y, Zhuang R-Q, Chuang F-S, et al. Synthetic scheme to increase the abrasion resistance of waterborne polyurethane–urea by controlling micro-phase separation. J Appl Polym Sci. 2021;138(24):50561. doi: 10.1002/app.50561.
  • García-Pacios V, Colera M, Iwata Y, et al. Incidence of the polyol nature in waterborne polyurethane dispersions on their performance as coatings on stainless steel. Prog Org Coat. 2013;76(12):1726–1729. doi: 10.1016/j.porgcoat.2013.05.007.
  • Mehravar S, Ballard N, Tomovska R, et al. The influence of macromolecular structure and composition on mechanical properties of films cast from solvent‐free polyurethane/acrylic hybrid dispersions. Macromol. Mater. Eng. 2019;304(8):1900155. doi: 10.1002/mame.201900155.
  • Gaddam SK, Kutcherlapati SNR, Palanisamy A. Self-cross-linkable anionic waterborne polyurethane–silanol dispersions from cottonseed-oil-based phosphorylated polyol as ionic soft segment. ACS Sustainable Chem. Eng. 2017;5(8):6447–6455. doi: 10.1021/acssuschemeng.7b00327.
  • Chen R, Zhang C, Kessler MR. Anionic waterborne polyurethane dispersion from a bio-based ionic segment. RSC Adv. 2014;4(67):35476–35483. doi: 10.1039/C4RA07519F.
  • Gaddam SK, Palanisamy A. Anionic waterborne polyurethane dispersions from maleated cotton seed oil polyol carrying ionisable groups. Colloid Polym Sci. 2016;294(2):347–355. doi: 10.1007/s00396-015-3787-1.
  • Kaikade DS, Sabnis AS. Recent advances in polyurethane coatings and adhesives derived from vegetable oil-based polyols. J Polym Environ. 2023; doi: 10.1007/s10924-023-02920-z.
  • Lu Y, Larock RC. Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties. Biomacromolecules. 2008;9(11):3332–3340. doi: 10.1021/bm801030g.
  • L. Mucci V, Hormaiztegui MEV, I. Aranguren M. Plant oil-based waterborne polyurethanes: a brief review. J Renew Mater. 2020;8(6):579–601. doi: 10.32604/jrm.2020.09455.
  • Jhon Y-K, Cheong I-W, Kim J-H. Chain extension study of aqueous polyurethane dispersions, 2001. www.elsevier.nl/locate/colsurfa.
  • Çaylı G, Küsefog˘lu S. A simple one-step synthesis and polymerization of plant oil triglyceride iodo isocyanates. J. Appl. Polym. Sci. 2010;116:(4):2433–2440. doi: 10.1002/app.31846.
  • Hojabri L, Kong X, Narine SS. Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane. J. Polym. Sci. A Polym. Chem. 2010;48(15):3302–3310. doi: 10.1002/pola.24114.
  • Morales-Cerrada R, Tavernier R, Caillol S. Fully bio-based thermosetting polyurethanes from bio-based polyols and isocyanates. Polymers. 2021;13(8):1255 doi: 10.3390/polym13081255.
  • Bizet B, Grau E, Cramail H, et al. Water-based non-isocyanate polyurethanes-polyureas NIPUUs. Polym. Chem. 2020;11(23):3786–3799. doi: 10.1039/D0PY00427Hï.
  • Wu Z, Dai J, Tang L, et al. Sorbitol-based aqueous cyclic carbonate dispersion for waterborne nonisocyanate polyurethane coatings via an environment-friendly route. J Coat Technol Res. 2019;16(3):721–732. doi: 10.1007/s11998-018-0150-8.
  • Meng L, Wang X, Ocepek M, et al. A new class of non-isocyanate urethane methacrylates for the urethane latexes. Polymer. 2017;109:146–159. doi: 10.1016/j.polymer.2016.12.022.
  • Zhang W, Wang T, Zheng Z, et al. Plant oil-based non-isocyanate waterborne poly(hydroxyl urethane)s. J Chem Eng . 2023;452:138965. doi: 10.1016/j.cej.2022.138965.
  • Ling Z, Zhang C, Zhou Q. Synthesis and characterization of 1 K waterborne non-isocyanate polyurethane epoxy hybrid coating. Prog Org Coat. 2022;169:106915. doi: 10.1016/j.porgcoat.2022.106915.
  • Zhang C, Huang K-C, Wang H, et al. Anti-corrosion non-isocyanate polyurethane polysiloxane organic/inorganic hybrid coatings. Prog Org Coat. 2020;148:105855. doi: 10.1016/j.porgcoat.2020.105855.
  • Wu Z, Tang L, Dai J, et al. Synthesis and properties of aqueous cyclic carbonate dispersion and non-isocyanate polyurethanes under atmospheric pressure. Prog Org Coat. 2019;136:105209. doi: 10.1016/j.porgcoat.2019.105209.
  • Paraskar PM, Prabhudesai MS, Hatkar VM, et al. Vegetable oil based polyurethane coatings – a sustainable approach : a review. Prog Org Coat. 2021;156:106267. doi: 10.1016/j.porgcoat.2021.106267.
  • Khatoon H, Iqbal S, Irfan M, et al. A review on the production, properties and applications of non-isocyanate polyurethane: a greener perspective. Prog Org Coat. 2021;154:106124. doi: 10.1016/j.porgcoat.2020.106124.
  • Lai Y, Qian Y, Yang D, et al. Preparation and performance of lignin-based waterborne polyurethane emulsion. Ind Crops Prod. 2021;170:113739. doi: 10.1016/j.indcrop.2021.113739.
  • Zhang W, Deng H, Xia L, et al. Semi-interpenetrating polymer networks prepared from castor oil-based waterborne polyurethanes and carboxymethyl chitosan. Carbohydr Polym. 2021;256:117507. doi: 10.1016/j.carbpol.2020.117507.
  • Liang Z, Zhu J, Li F, et al. Synthesis and properties of self-crosslinking waterborne polyurethane with side chain for water-based varnish. Prog Org Coat. 2021;150:105972. doi: 10.1016/j.porgcoat.2020.105972.
  • Ding Z, Li J, Xin W, et al. Low gloss waterborne polyurethane coatings with anti-dripping and flame retardancy via montmorillonite nanosheets. Prog Org Coat. 2019;136:105273. doi: 10.1016/j.porgcoat.2019.105273.
  • Velencoso MM, Ramos MJ, Klein R, et al. Thermal degradation and fire behaviour of novel polyurethanes based on phosphate polyols. Polym Degrad Stab. 2014;101:40–51. doi: 10.1016/j.polymdegradstab.2014.01.012.
  • Wang CS, Zhang J, Wang H, et al. Simultaneously improving the fracture toughness and flame retardancy of soybean oil-based waterborne polyurethane coatings by phosphorus-nitrogen chain extender. Ind Crops Prod. 2021;163:113328. doi: 10.1016/j.indcrop.2021.113328.
  • Rahman MM. Synthesis and properties of waterborne polyurethane adhesives: effect of chain extender of ethylene diamine, butanediol, and fluoro-butanediol. J Adhes Sci Technol. 2013;27(23):2592–2602. doi: 10.1080/01694243.2013.793996.
  • Lyu J, Xu K, Zhang N, et al. In situ incorporation of diamino silane group into waterborne polyurethane for enhancing surface hydrophobicity of coating. Molecules. 2019;24:1667. doi: 10.3390/molecules24091667.
  • Xu W, Wang W, Hao L, et al. Synthesis and properties of novel triazine-based fluorinated chain extender modified waterborne polyurethane hydrophobic films. Prog Org Coat. 2021;157:106282. doi: 10.1016/j.porgcoat.2021.106282.
  • Yen M-S, Tsai H-C, Hong P-D. The physical properties of aqueous cationic–nonionic polyurethane with poly(ethylene glycol methyl ether) side chain and its blend with aqueous cationic polyurethane. J. Appl. Polym. Sci. 2006;100(4):2963–2974. doi: 10.1002/app.22852.
  • Yen MS, Tsai HC, Hong PD. Effect of soft segment composition on the physical properties of nonionic aqueous polyurethane containing side chain PEGME. J. Appl. Polym. Sci. 2007;105(3):1391–1399. doi: 10.1002/app.26262.
  • Honarkar H. Waterborne polyurethanes: a review. J Dispers Sci Technol. 2018;39(4):507–516. doi: 10.1080/01932691.2017.1327818.
  • Shendi HK, Omrani I, Ahmadi A, et al. Synthesis and characterization of a novel internal emulsifier derived from sunflower oil for the preparation of waterborne polyurethane and their application in coatings. Prog Org Coat. 2017;105:303–309. doi: 10.1016/j.porgcoat.2016.11.033.
  • Hormaiztegui MEV, Aranguren MI, Mucci VL. Synthesis and characterization of a waterborne polyurethane made from castor oil and tartaric acid. Eur Polym J. 2018;102:151–160. doi: 10.1016/j.eurpolymj.2018.03.020.
  • Sukhawipat N, Saetung N, Pasetto P, et al. A novel high adhesion cationic waterborne polyurethane for green coating applications. Prog Org Coat. 2020;148:105854. doi: 10.1016/j.porgcoat.2020.105854.
  • Gong R, Cao H, Zhang H, et al. UV-curable cationic waterborne polyurethane from CO2-polyol with excellent water resistance. Polymer. 2021;218:123536. doi: 10.1016/j.polymer.2021.123536.
  • Madbouly SA, Xia Y, Kessler MR. Rheological behavior of environmentally friendly castor oil-based waterborne polyurethane dispersions. Macromolecules. 2013;46(11):4606–4616. doi: 10.1021/ma400200y.
  • Pascual G, Aranguren MI, Mucci V. Hybrid films from blends of castor oil and polycaprolactone waterborne polyurethanes. Polymers. 2022;14 (20):4303. doi: 10.3390/polym14204303.
  • Fuensanta M, Khoshnood A, Martín-Martínez JM. Structure–properties relationship in waterborne poly(urethane-urea)s synthesized with dimethylolpropionic acid (DMPA) internal emulsifier added before, during and after prepolymer formation. Polymers. 2020;12(1):23. doi: 10.3390/polym12112478.
  • Lei L, Xia Z, Cao G, et al. Synthesis and adhesion property of waterborne polyurethanes with different ionic group contents. Colloid Polym Sci. 2014;292(2):527–532. doi: 10.1007/s00396-013-3129-0.
  • Mehravar S, Ballard N, Veloso A, et al. Toward a green synthesis of polyurethane/(meth)acrylic dispersions through control of colloidal characteristics. Langmuir. 2018;34(39):11772–11783. doi: 10.1021/acs.langmuir.8b02264.
  • Daniloska V, Tomovska R, Asua JM. Hybrid miniemulsion photopolymerization in a continuous tubular reactor—a way to expand the characteristics of polyurethane/acrylics. J Chem Eng . 2012;184:308–314. doi: 10.1016/j.cej.2012.01.040.
  • Che J-Y, Cheon J-M, Chun J-H, et al. Preparation and properties of emulsifier-/solvent-free slightly crosslinked waterborne polyurethane-acrylic hybrid emulsions for footwear adhesives (III)–effect of trimethylol propane (TMP)/ethylene diamine (EDA) content. J Adhes Sci Technol. 2017;31(17):1872–1887. doi: 10.1080/01694243.2017.1285744.
  • Li X, Zhao T, Wang H, et al. External surfactant-free waterborne polyurethane grafted fluorine-containing acrylic copolymer with high hardness and low water absorption using chlorinated soybean oil-based urethane acrylate as polyol. J Adhes Sci Technol. 2021;35(17):1909–1923. doi: 10.1080/01694243.2020.1862470.
  • Alvarez GA, Fuensanta M, Orozco VH, et al. Hybrid waterborne polyurethane/acrylate dispersion synthesized with bisphenol A-glicidylmethacrylate (Bis-GMA) grafting agent. Prog Org Coat. 2018;118:30–39. doi: 10.1016/j.porgcoat.2018.01.016.
  • Li M, Daniels ES, Dimonie V, et al. Preparation of polyurethane/acrylic hybrid nanoparticles via a miniemulsion polymerization process. Macromolecules. 2005;38(10):4183–4192. doi: 10.1021/ma048141z.
  • Peruzzo PJ, Anbinder PS, Pardini OR, et al. Waterborne polyurethane/acrylate: comparison of hybrid and blend systems. Prog Org Coat. 2011;72(3):429–437. doi: 10.1016/j.porgcoat.2011.05.016.
  • Meng Y, Lv P, Liu Q, et al. Preparation and characterization of soybean oil-based waterborne polyurethane/acrylate hybrid emulsions for self-matting coatings. New J. Chem. 2019;43(48):19193–19199. doi: 10.1039/C9NJ04538D.
  • Sukhawipat N, Raksanak W, Kalkornsurapranee E, et al. A new hybrid waterborne polyurethane coating synthesized from natural rubber and rubber seed oil with grafted acrylate. Prog Org Coat. 2020;141:105554. doi: 10.1016/j.porgcoat.2020.105554.
  • Sardon H, Irusta L, Aguirresarobe RH, et al. Polymer/silica nanohybrids by means of tetraethoxysilane sol–gel condensation onto waterborne polyurethane particles. Prog Org Coat. 2014;77(9):1436–1442. doi: 10.1016/j.porgcoat.2014.04.032.
  • Santamaria-Echart A, Ugarte L, Arbelaiz A, et al. Two different incorporation routes of cellulose nanocrystals in waterborne polyurethane nanocomposites. Eur Polym J. 2016;76:99–109. doi: 10.1016/j.eurpolymj.2016.01.035.
  • Kong L, Xu D, He Z, et al. Nanocellulose-reinforced polyurethane for waterborne wood coating. Molecules. 2019;24 (17):3151,13. doi: 10.3390/molecules24173151.
  • Ding Z, Li J, Xin W, et al. Facile and high-concentration exfoliation of montmorillonite into Mono-layered nanosheets and application in multifunctional waterborne polyurethane coating. Appl Clay Sci. 2020;198:105798. doi: 10.1016/j.clay.2020.105798.
  • Tounici A, Martín-Martínez JM. Structure and adhesion properties of waterborne poly(urethane urea)s containing small amounts of different graphene derivatives. J Adhes Sci Technol. 2021;35(24):2758–2789. doi: 10.1080/01694243.2021.1970371.
  • Zhang P, Xu P, Fan H, et al. Covalently functionalized graphene towards molecular-level dispersed waterborne polyurethane nanocomposite with balanced comprehensive performance. Appl Surf Sci. 2019;471:595–606. doi: 10.1016/j.apsusc.2018.11.235.
  • Sun Y, Wu Y, Yang F, et al. A novel waterborne polyurethane coating modified by highly dispersed nano-boron carbide particles. J Appl Polym Sci. 2021;138(15):50214. doi: 10.1002/app.50214.
  • Zhao Z, Guo L, Feng L, et al. Polydopamine functionalized graphene oxide nanocomposites reinforced the corrosion protection and adhesion properties of waterborne polyurethane coatings. Eur Polym J. 2019;120:109249. doi: 10.1016/j.eurpolymj.2019.109249.
  • Alkan-Tas B, Durmus-Sayar A, Duman ZE, et al. Antibacterial hybrid coatings from halloysite-immobilized lysostaphin and waterborne polyurethanes. Prog Org Coat. 2021;156:106248. doi: 10.1016/j.porgcoat.2021.106248.
  • Macosko CW. Rheology: principles, measurements, and applications. New York: Wiley-VCH; 1994. https://books.google.com.ar/books?id=Kai7QgAACAAJ.
  • Varela López F, Rosen M. Rheological effects in roll coating of paints. La Am Appl Res. 2002;32:247–252.
  • Eley RR. Applied rheology in the protective and decorative coatings industry, 2005. http://www.bsr.org.uk.
  • Bieleman JH. Organic thickeners for water-borne paints. Chimia. 2002;56(5):163–169. doi: 10.2533/000942902777680504.
  • Kästner U. The impact of rheological modifiers on water-borne coatings. Colloids Surf A Physicochem Eng Asp. 2001;183-185:805–821. doi: 10.1016/S0927-7757(01)00507-6.
  • Deka A, Dey N. Rheological studies of two component high build epoxy and polyurethane based high performance coatings. J Coat Technol Res. 2013;10(3):305–315. doi: 10.1007/s11998-012-9445-3.
  • Malvern Instruments Limited. Optimizing rheology for paint and coating applications, 2015). https://cdn.technologynetworks.com/TN/Resources/PDF/WP150713PaintsCoatingsRheology.pdf. (accessed April 15, 2022).
  • Guy A. Aspects of rheology to consider for different application methods, 2015). https://www.safinah-group.com/wp-content/uploads/2017/11/WROCCA-Rheology-Forum.pdf. (accessed April 15, 2022).
  • Fuhr D.. Rheology of waterborne paints, Paints & Coatings. 2017). https://knowledge.ulprospector.com/7491/pc-rheology-waterborne-paints/. (accessed April 15, 2022)
  • Madbouly SA, Otaigbe JU, Nanda AK, et al. Rheological behavior of aqueous polyurethane dispersions: effects of solid content, degree of neutralization, chain extension, and temperature. Macromolecules. 2005;38(9):4014–4023. doi: 10.1021/ma050453u.
  • Zhou L, Koltisko B. Development of soft feel coatings with waterborne polyurethanes. JCT Research. 2005;2:54–60. https://link.gale.com/apps/doc/A132499745/AONE?u=anon∼cb2ba2d3&sid=googleScholar&xid=1d51fcd3.
  • Li S, Wang S, Du X, et al. Waterborne polyurethane coating based on tannic acid functionalized Ce-MMT nanocomposites for the corrosion protection of carbon steel. Prog Org Coat. 2022;163:106613. doi: 10.1016/j.porgcoat.2021.106613.
  • Wen JG, Geng W, Geng HZ, et al. Improvement of corrosion resistance of waterborne polyurethane coatings by covalent and noncovalent grafted graphene oxide nanosheets. ACS Omega. 2019;4(23):20265–20274. doi: 10.1021/acsomega.9b02687.
  • Miao C, Li Z, Li K, et al. A super-cooling solar reflective coating with waterborne polyurethane for asphalt pavement. Prog Org Coat. 2022;165:106741. doi: 10.1016/j.porgcoat.2022.106741.
  • Koleske J. Paint and coating testing manual - 15th edition of the Gardner-Sward handbook. 15th ed. USA: ASTM International; 2012.
  • Yang Z, Wu G. Effects of soft segment characteristics on the properties of biodegradable amphiphilic waterborne polyurethane prepared by a green process. J Mater Sci. 2020;55(7):3139–3156. doi: 10.1007/s10853-019-04237-6.
  • Ospina AC, Orozco VH, Giraldo LF, et al. Study of waterborne polyurethane materials under aging treatments. Effect of the soft segment length. Prog Org Coat. 2020;138:105357. doi: 10.1016/j.porgcoat.2019.105357.
  • Zhao J, Zhou T, Zhang J, et al. Synthesis of a waterborne polyurethane-fluorinated emulsion and its hydrophobic properties of coating films. Ind. Eng. Chem. Res. 2014;53(49):19257–19264. doi: 10.1021/ie5040732.
  • Liu X, Hong W, Chen X. Continuous production of water-borne polyurethanes: a review. Polymers. 2020;12(1):17. doi: 10.3390/polym12122875.
  • Hong C, Zhou X, Ye Y, et al. Synthesis and characterization of UV-curable waterborne polyurethane–acrylate modified with hydroxyl-terminated polydimethylsiloxane: UV-cured film with excellent water resistance. Prog Org Coat. 2021;156:106251. doi: 10.1016/j.porgcoat.2021.106251.
  • Dall Agnol L, Dias FTG, Ornaghi HL, et al. UV-curable waterborne polyurethane coatings: a state-of-the-art and recent advances review. Prog Org Coat. 2021;154:106156. doi: 10.1016/j.porgcoat.2021.106156.
  • Zhang Q, Liu W, Sun F. Synthesis and properties of waterborne UV‐curable polydimethylsiloxane‐based polyurethane oligomers: UV‐cured film with excellent water resistance and thermostability. J Adhes Sci Technol. 2020;34(20):2245–2261. doi: 10.1080/01694243.2020.1757191.
  • Wang S, Du X, Jiang Y, et al. Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus–nitrogen flame retardant. J Colloid Interface Sci. 2019;537:197–205. doi: 10.1016/j.jcis.2018.11.003.
  • Tabatabaee F, Khorasani M, Ebrahimi M, et al. Synthesis and comprehensive study on industrially relevant flame retardant waterborne polyurethanes based on phosphorus chemistry. Prog Org Coat. 2019;131:397–406. doi: 10.1016/j.porgcoat.2019.02.042.
  • Pérez Das Dores A, Llorente O, Martin L, et al. Polydimethylsiloxane containing waterborne hydrophobic polyurethane coatings with good adhesion to metals: synthesis and characterization. Prog Org Coat. 2022;162:106564. doi: 10.1016/j.porgcoat.2021.106564.
  • Dai M, Wang J, Zhang Y. Improving water resistance of waterborne polyurethane coating with high transparency and good mechanical properties. Colloids Surf A Physicochem Eng Asp. 2020;601:124994. doi: 10.1016/j.colsurfa.2020.124994.
  • Han Y, Jiang Y, Hu J. Collagen incorporation into waterborne polyurethane improves breathability, mechanical property, and self-healing ability. Compos Part A Appl Sci Manuf. 2020;133:105854. doi: 10.1016/j.compositesa.2020.105854.
  • Buffa JM, Mondragon G, Corcuera MA, et al. Physical and mechanical properties of a vegetable oil based nanocomposite. Eur Polym J. 2018;98:116–124. doi: 10.1016/j.eurpolymj.2017.10.035.
  • Hormaiztegui MEV, Daga B, Aranguren MI, et al. Bio-based waterborne polyurethanes reinforced with cellulose nanocrystals as coating films. Prog Org Coat. 2020;144:105649. doi: 10.1016/j.porgcoat.2020.105649.
  • Liu R, Zhu F, Hu J, et al. Cellulose nanocrystals/water-based polyurethane nanocomposite films with excellent wear resistance and softness. Micro Nano Lett. 2021;16(4):268–273. doi: 10.1049/mna2.12047.
  • Alonso-Lerma B, Larraza I, Barandiaran L, et al. Enzymatically produced cellulose nanocrystals as reinforcement for waterborne polyurethane and its applications. Carbohydr Polym. 2021;254:117478. doi: 10.1016/j.carbpol.2020.117478.
  • Lu Y, Zhang P, Fan M, et al. Dual bond synergy enhancement to mechanical and thermal properties of castor oil-based waterborne polyurethane composites. Polymer. 2019;182:121832. doi: 10.1016/j.polymer.2019.121832.
  • Larraza I, Vadillo J, Santamaria-Echart A, et al. The effect of the carboxylation degree on cellulose nanofibers and waterborne polyurethane/cellulose nanofiber nanocomposites properties. Polym Degrad Stab. 2020;173:109084. doi: 10.1016/j.polymdegradstab.2020.109084.
  • Hormaiztegui MEV, Mucci VL, Aranguren MI. Composite films obtained from a waterborne biopolyurethane. Incorporation of tartaric acid and nanocellulose. Ind Crops Prod. 2019;142:111879. doi: 10.1016/j.indcrop.2019.111879.
  • Mondragon G, Santamaria-Echart A, Hormaiztegui MEV, et al. Nanocomposites of waterborne polyurethane reinforced with cellulose nanocrystals from sisal fibres. J Polym Environ. 2018;26(5):1869–1880. doi: 10.1007/s10924-017-1089-z.
  • Ding X, Wang X, Zhang H, et al. Preparation of waterborne polyurethane-silica nanocomposites by a click chemistry method. Mater Today Commun. 2020;23:100911. doi: 10.1016/j.mtcomm.2020.100911.
  • Du W, Jin Y, Lai S, et al. Urethane-silica functionalized graphene oxide for enhancing mechanical property and fire safety of waterborne polyurethane composites. Appl Surf Sci. 2019;492:298–308. doi: 10.1016/j.apsusc.2019.06.227.
  • Zhang P, Lu Y, Fan M, et al. Role of cellulose-based composite materials in synergistic reinforcement of environmentally friendly waterborne polyurethane. Prog Org Coat. 2020;147:105811. doi: 10.1016/j.porgcoat.2020.105811.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.