108
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Performance evaluation of additive TiO2, MWCNT and GNP reinforced particles on Mg AZ31 based matrix composites by friction stir processing

, , &
Pages 637-653 | Received 02 May 2023, Accepted 23 Jun 2023, Published online: 03 Aug 2023

References

  • Seifiyan H, Sohi MH, Ansari M, et al. Influence of friction stir processing conditions on corrosion behavior of AZ31B magnesium alloy. J Magnes Alloy. 2019;7(4):605–616. doi: 10.1016/j.jma.2019.11.004.
  • Sunil BR, Reddy GPK, Patel H, et al. Magnesium based surface metal matrix composites by friction stir processing. J Magnes Alloy. 2016;4(1):52–61. doi: 10.1016/j.jma.2016.02.001.
  • Sharma SK, Saxena KK, Malik V, et al. Significance of alloying elements on the mechanical characteristics of Mg-based materials for biomedical applications. Crystals. 2022;12(8):1138. doi: 10.3390/cryst12081138.
  • Song X, Bayati P, Gupta M, et al. Fracture of magnesium matrix nanocomposites – a review. Int J Lightweight Mater Manuf. 2021;4(1):67–98. doi: 10.1016/j.ijlmm.2020.07.002.
  • Cao G, Zhang D, Zhang W, et al. Microstructure evolution and mechanical properties of Mg–Nd–Y alloy in different friction stir processing conditions. J Alloys Compd. 2015;636:12–19. doi: 10.1016/j.jallcom.2015.02.081.
  • Ammouri AH, Kridli G, Ayoub G, et al. Relating grain size to the Zener–Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing. J Mater Process Technol. 2015;222:301–306. doi: 10.1016/j.jmatprotec.2015.02.037.
  • Liu F-J, Ji Y, Bai Y-X Influence of multipass high rotating speed friction stir processing on microstructure evolution, corrosion behavior and mechanical properties of stirred zone on AZ31 alloy. Trans Nonferrous Met Soc China. 2020;30(12):3263–3273. doi: 10.1016/S1003-6326(20)65459-0.
  • Kumar N, Mishra RS, Dahotre NB, et al. Effect of friction stir processing on microstructure and mechanical properties of laser-processed Mg-4Y3-Nd alloy. Mater Des. 2016;110:663–675. doi: 10.1016/j.matdes.2016.08.039.
  • Liu F, Yan J, Qingsen M, et al. Microstructure and corrosion resistance of laser cladding and friction stir processing hybrid modification Al–Si coatings on AZ31B. Vacuum. 2016;133:31–37. doi: 10.1016/j.vacuum.2016.08.010.
  • Ahmadkhaniha D, Heydarzadeh MS, Zarei-Hanzaki A, et al. Taguchi optimization of process parameters in friction stir processing of pure Mg. J Magnes Alloy. 2015;3(2):168–172. doi: 10.1016/j.jma.2015.04.002.
  • Atrens A, Shi Z, Mehreen SU, et al. Review of Mg alloy corrosion rates. J Magnes Alloy. 2020;8(4):989–998. doi: 10.1016/j.jma.2020.08.002.
  • Saberi A, Bakhsheshi HR, Karamian E, et al. Magnesium-graphene nano-platelet composites: corrosion behavior, mechanical and biological properties. J Alloy Compd. 2020;821:153379. doi: 10.1016/j.jallcom.2019.153379.
  • Sharma SK, Saxena KK. An outlook on the influence on mechanical properties of AZ31 reinforced with graphene nanoparticles using powder metallurgy technique for biomedical application. Mater Today Proc. 2022;56(4):2278–2287.
  • Arora HS, Singh H, Dhindaw BK. Some observations on microstructural changes in a Mg-based AE42 alloy subjected to friction stir processing. Metall Mater Trans B. 2012;43(1):92–108. doi: 10.1007/s11663-011-9573-7.
  • Liu F, Li Y, Sun Z, et al. Corrosion resistance and tribological behavior of particles reinforced AZ31 magnesium matrix composites developed by friction stir processing. J Mater Res Technol. 2021;11:1019–1030. doi: 10.1016/j.jmrt.2021.01.071.
  • Arab M, Marashi SPH. Effect of graphene nanoplatelets (GNPs) content on improvement of mechanical and tribological properties of AZ31 Mg matrix nanocomposite. Tribol Int. 2019;132:1–10. doi: 10.1016/j.triboint.2018.11.023.
  • Balakrishnan M, Dinaharan I, Palanivel R, et al. Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing. J Magnes Alloy. 2015;3(1):76–78. doi: 10.1016/j.jma.2014.12.007.
  • Selvamani ST, Premkumar S, Vigneshwar M, et al. Influence of carbon nano tubes on mechanical, metallurgical and tribological behavior of magnesium nanocomposites. J Magnes Alloy. 2017;5(3):326–335. doi: 10.1016/j.jma.2017.08.006.
  • Sharma V, Prakash U, Kumar BVM. Surface composites by friction stir processing: a review. J Mater Process Technol. 2015;224:117–134. doi: 10.1016/j.jmatprotec.2015.04.019.
  • Arora GS, Saxena KK, Mohammed KA, et al. Manufacturing techniques for Mg-Based metal matrix composite with different reinforcements. Crystals. 2022;12(7):945. doi: 10.3390/cryst12070945.
  • Mabuwa S, Msomi V, Mehdi H, et al. Effect of material positioning on Si-rich TIG welded joints of AA6082 and AA8011 by friction stir processing. J Adhes Sci Technol. 2022;1–19. doi: 10.1080/01694243.2022.2142366.
  • Saini N, Pandey C, Dwivedi DK. Ductilizing of cast hypereutectic Al–17%Si alloy by friction stir processing. J Process Mech Eng. 2018;232(6):1–6.
  • Vijayavel P, Balasubramanian V, Sundaram S. Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength and ductility of friction stir processed LM25AA-5% SiCp metal matrix composites. Mater Des. 2014;57:1–9. doi: 10.1016/j.matdes.2013.12.008.
  • Navazani M, Dehghani K. Fabrication of Mg-ZrO2 surface layer composites by friction stir processing. J Mater Process Technol. 2016;229:439–449. doi: 10.1016/j.jmatprotec.2015.09.047.
  • Arora HS, Singh H, Dhindaw BK. Parametric study of friction stir processing of Magnesium-Based AE42 alloy. J Mater Eng Perform. 2012;21(11):2328–2339. doi: 10.1007/s11665-012-0205-4.
  • Valle J, del A, Rey P, et al. Mechanical properties of ultra-fine grained AZ91 magnesium alloy processed by friction stir processing. Mater Sci Eng: A. 2015;628:198–206. doi: 10.1016/j.msea.2015.01.030.
  • Darras B, Kishta E. Submerged friction stir processing of AZ31 magnesium alloy. Mater Des. 2013;47:133–137. doi: 10.1016/j.matdes.2012.12.026.
  • Khodabakhshi F, Gerlich AP, Simchi A, et al. Cryogenic friction-stir processing of ultrafine-grained Al–Mg–TiO2 nanocomposites. Mater Sci Eng: A. 2015;620:471–482. doi: 10.1016/j.msea.2014.10.048.
  • Vahedi F, Zarei-Hanzaki A, Salandari-Rabori A, et al. Microstructural evolution and mechanical properties of thermomechanically processed AZ31 magnesium alloy reinforced by micro-graphite and nano-graphene particles. J Alloys Compd. 2020;815:152231. doi: 10.1016/j.jallcom.2019.152231.
  • Deepan M, Pandey C, Saini N, et al. Estimation of strength and wear properties of Mg/SiC nanocomposite fabricated through FSP rout. J Braz Soc Mech Sci Eng. 2017;39(11):4613–4622. doi: 10.1007/s40430-017-0757-1.
  • Jalilvand MM, Mazaheri Y. Effect of Mono and hybrid ceramic reinforcement particles on the tribological behavior of the AZ31 matrix surface composites developed by friction stir processing. Ceram Int. 2020;46(12):20345–20356. doi: 10.1016/j.ceramint.2020.05.123.
  • Saikrishna N, Reddy GPK, Munirathinam B, et al. An investigation on the hardness and corrosion behavior of MWCNT/Mg composites and grain refined Mg. J Magnes Alloy. 2018;6(1):83–89. doi: 10.1016/j.jma.2017.12.003.
  • Arya PK, Sathiaraj D, Jain NK, et al. Murugesan jayaprakash and kuldeep K. Saxena microstructure, mechanical and corrosion behaviour of friction stir welding of AA6061 Al alloy and AZ31B Mg alloy. Metall Res Technol. 2022;119(4):413. doi: 10.1051/metal/2022057.
  • Moheimani SK, Keshtgar A, Khademzadeh S, et al. Tribological behaviour of AZ31 magnesium alloy reinforced by bimodal size B4C after precipitation hardening. J Magnes Alloy. 2022;10(11):3267–3280. doi: 10.1016/j.jma.2021.05.016.
  • Vedabouriswaran G, Aravindan S. Development and characterization studies on magnesium alloy (RZ 5) surface metal matrix composites through friction stir processing. J Magnes Alloy. 2018;6(2):145–163. doi: 10.1016/j.jma.2018.03.001.
  • Saini N, Pandey C, Thapliyal S, et al. Mechanical properties and wear behavior of Zn and MoS2 reinforced surface composite Al–Si alloys using frition stir processing. Silicon. 2017;10(5):1979–1990. doi: 10.1007/s12633-017-9710-2.
  • Arora HS, Singh H, Dhindaw BK. Wear behaviour of a Mg alloy subjected to friction stir processing. Wear. 2013;303(1–2):65–77. doi: 10.1016/j.wear.2013.02.023.
  • Shen M, Zhu X, Han B, et al. Dry sliding wear behaviour of AZ31 magnesium alloy strengthened by nanoscale SiCp. J Mater Res Technol. 2022;16:814–823. doi: 10.1016/j.jmrt.2021.12.048.
  • Shahin M, Munir K, Wen C, et al. Nano-tribological behavior of graphene nanoplatelet–reinforced magnesium matrix nanocomposites. J Magnes Alloy. 2021;9(3):895–909. doi: 10.1016/j.jma.2020.10.001.
  • Nie KB, Wang XJ, Deng KK, et al. Magnesium matrix composite reinforced by nanoparticles – a review. J Magnes Alloy. 2021;9(1):57–77. doi: 10.1016/j.jma.2020.08.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.