448
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of bead morphology and mechanical behaviour for metal inert gas welding-based WAAM in pulsed mode metal transfer on 316LSi stainless steel

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 738-769 | Received 15 May 2023, Accepted 26 Jun 2023, Published online: 11 Aug 2023

References

  • Yu L, Chen K, Zhang Y, et al. Microstructures and mechanical properties of NiTi shape memory alloys fabricated by wire arc additive manufacturing. J Alloys Compd. 2022;892:162193. doi: 10.1016/j.jallcom.2021.162193.
  • Bhatt P, Sharma MK, Mukadam MD, et al. Electrochemical capacitance and cubic-rhombohedral phase transition of sodium intercalated ferrimagnetic manganese hexacyanoferrate based open framework material. Sustain Mater Technol. 2023;35:e00532. doi: 10.1016/j.susmat.2022.e00532.
  • Jiang PF, Ji R, Nie MH, et al. A high deposition efficiency method for wire arc additive manufacturing. Mater Sci Technol. 2023;39(13):1640–1644. doi: 10.1080/02670836.2023.2177805.
  • Wang X, Wang A, Wang K, et al. Process stability for GTAW-based additive manufacturing. Rapid Prototyp J. 2019;25(5);1355–2546. doi: 10.1108/RPJ-02-2018-0046.
  • Zhang Z, Wang Q, Li Z, et al. Research on 316 stainless steel low-power pulsed laser-induced arc additive manufacturing by different deposition routes. Weld Int. 2022;36(11):679–692. doi: 10.1080/09507116.2022.2152761.
  • Shukla P, Chitral S, Kumar T, et al. The influence of GMAW correction parameters on stabilizing the deposition characteristics for wire arc additive manufacturing. J Manuf Process. 2023;90:54–68. doi: 10.1016/j.jmapro.2023.01.075.
  • Jin W, Zhang C, Jin S, et al. Wire arc additive manufacturing of stainless steels: a review. Appl Sci. 2020;10(5):1563. doi: 10.3390/app10051563.
  • Ceritbinmez F, Günen A, Gürol U, et al. A comparative study on drillability of Inconel 625 alloy fabricated by wire arc additive manufacturing. J Manuf Process. 2023;89:150–169. doi: 10.1016/j.jmapro.2023.01.072.
  • Günen A, Gürol U, Koçak M, et al. A new approach to improve some properties of wire arc additively manufactured stainless steel components: simultaneous homogenization and boriding. Surf Coatings Technol. 2023;460:129395. doi: 10.1016/j.surfcoat.2023.129395.
  • Çam G. Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM). Mater Today Proc. 2022;62:77–85. doi: 10.1016/j.matpr.2022.02.137.
  • Vora J, Parmar H, Chaudhari R, et al. Experimental investigations on mechanical properties of multi-layered structure fabricated by GMAW-based WAAM of SS316L. J Mater Res Technol. 2022;20:2748–2757. doi: 10.1016/j.jmrt.2022.08.074.
  • Rodrigues TA, Escobar JD, Shen J, et al. Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: microstructure and synchrotron X-ray diffraction analysis. Addit Manuf. 2021;48:102428. doi: 10.1016/j.addma.2021.102428.
  • Wang L, Xue J, Wang Q. Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel. Mater Sci Eng A. 2019;751:183–190. doi: 10.1016/j.msea.2019.02.078.
  • Xia C, Pan Z, Zhang S, et al. Model predictive control of layer width in wire arc additive manufacturing. J Manuf Process. 2020;58:179–186. doi: 10.1016/j.jmapro.2020.07.060.
  • Zhao Y, Li W, Liu A. Optimization of geometry quality model for wire and arc additive manufacture based on adaptive multi-objective grey wolf algorithm. Soft Comput. 2020;24(22):17401–17416. doi: 10.1007/s00500-020-05027-y.
  • Thien A, Saldana C, Kurfess T. The effect of WAAM process parameters on process conditions and production metrics in the fabrication of single-pass multi-layer wall artifacts. Int J Adv Manuf Technol. 2022;119(1–2):531–547. doi: 10.1007/s00170-021-08266-x.
  • Zhang H, Liu W, Fan C, et al. Arc characteristics and weld formation of aluminum alloy by AC/DC mixed GTAW. Mater Manuf Process. 2023;38(4):427–433. doi: 10.1080/10426914.2022.2089894.
  • Sasikumar R, Kannan AR, Kumar SM, et al. Wire arc additive manufacturing of functionally graded material with SS 316L and IN625: microstructural and mechanical perspectives. CIRP J Manuf Sci Technol. 2022;38:230–242. doi: 10.1016/j.cirpj.2022.05.005.
  • Lehmann T, Jain A, Jain Y, et al. Concurrent geometry-and material-based process identification and optimization for robotic CMT-based wire arc additive manufacturing. Mater Des. 2020;194:108841. doi: 10.1016/j.matdes.2020.108841.
  • Zavdoveev A, Pozniakov V, Baudin T, et al. Optimization of the pulsed arc welding parameters for wire arc additive manufacturing in austenitic steel applications. Int J Adv Manuf Technol. 2022;119(7–8):5175–5193. doi: 10.1007/s00170-022-08704-4.
  • Geng H, Li J, Xiong J, et al. Optimization of wire feed for GTAW based additive manufacturing. J Mater Process Technol. 2017;243:40–47. doi: 10.1016/j.jmatprotec.2016.11.027.
  • Wahsh LM, ElShater AE, Mansour AK, et al. Parameter selection for wire arc additive manufacturing (WAAM) process. Mater Sci Technol. Conference publication 2018:78–85. doi: 10.7449/2018mst/2018/mst_2018_78_85.
  • Tang S, Wang G, Huang C, et al. Investigation, modeling and optimization of abnormal areas of weld beads in wire and arc additive manufacturing. Rapid Prototyp J. 2020; 26(7):1355–2546. doi: 10.1108/RPJ-08-2019-0229.
  • Ayed A, Valencia A, Bras G, et al. Effects of WAAM process parameters on metallurgical and mechanical properties of Ti-6Al-4V deposits. In: Advances in materials, mechanics and manufacturing. Springer, Cham; Book Chapter; 2020. p. 26–35; doi: 10.1007/978-3-030-24247-3_4.
  • Suryakumar S, Karunakaran KP, Bernard A, et al. Weld bead modeling and process optimization in Hybrid Layered Manufacturing. Comput Des. 2011;43(4):331–344. doi: 10.1016/j.cad.2011.01.006.
  • Kumar A, Maji K. Selection of process parameters for near-net shape deposition in wire arc additive manufacturing by genetic algorithm. J Mater Eng Perform. 2020;29(5):3334–3352. doi: 10.1007/s11665-020-04847-1.
  • Xiong J, Zhang G, Gao H, et al. Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing. Robot Comput Integr Manuf. 2013;29(2):417–423. doi: 10.1016/j.rcim.2012.09.011.
  • Hu Z, Qin X, Li Y, et al. Welding parameters prediction for arbitrary layer height in robotic wire and arc additive manufacturing. J Mech Sci Technol. 2020;34(4):1683–1695. doi: 10.1007/s12206-020-0331-0.
  • Yaseer A, Chen H. Machine learning based layer roughness modeling in robotic additive manufacturing. J Manuf Process. 2021;70:543–552. doi: 10.1016/j.jmapro.2021.08.056.
  • Xiong J, Zhang G, Hu J, et al. Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. J Intell Manuf. 2014;25(1):157–163. doi: 10.1007/s10845-012-0682-1.
  • Venkata Rao K, Parimi S, Suvarna Raju L, et al. Modelling and optimization of weld bead geometry in robotic gas metal arc-based additive manufacturing using machine learning, finite-element modelling and graph theory and matrix approach. Soft Comput. 2022;26(7):3385–3399. doi: 10.1007/s00500-022-06749-x.
  • Yang Y, Zhou X, Li Q, et al. A computationally efficient thermo-mechanical model for wire arc additive manufacturing. Addit Manuf. 2021;46:102090. doi: 10.1016/j.addma.2021.102090.
  • Naveen Srinivas M, Vimal KEK, Manikandan N, et al. Parametric optimization and multiple regression modelling for fabrication of aluminium alloy thin plate using wire arc additive manufacturing. Int J Interact Des Manuf. 2022. doi: 10.1007/s12008-022-00921-1.
  • Cho JS, Lee DH, Seo GJ, et al. Optimizing the mean and variance of bead geometry in the wire + arc additive manufacturing using a desirability function method. Int J Adv Manuf Technol. 2022;120(11–12):7771–7783. doi: 10.1007/s00170-022-09237-6.
  • Le VT, Mai DS, Doan TK, et al. Wire and arc additive manufacturing of 308L stainless steel components: optimization of processing parameters and material properties. Eng Sci Technol Int J. 2021;24(4):1015–1026. doi: 10.1016/j.jestch.2021.01.009.
  • Dinovitzer M, Chen X, Laliberte J, et al. Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Addit Manuf. 2019;26:138–146. doi: 10.1016/j.addma.2018.12.013.
  • John G, Aditya C, Malcolm B. A new finite element model for welding heat sources. Metall Trans B. 1984;15:299–305.
  • Bao H, Wu S, Wu Z, et al. A machine-learning fatigue life prediction approach of additively manufactured metals. Eng Fract Mech. 2021;242:107508. doi: 10.1016/j.engfracmech.2020.107508.
  • Demuth H, Beale M. Neural network toolbox: for use with Matlab. Natick, MA: The Math Works Inc., 1998. OpenURL-chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://cda.psych.uiuc.edu/matlab_pdf/nnet.pdf. Accessed on 03.06.2023
  • Chigilipalli BK, Veeramani A. An experimental investigation and neuro-fuzzy modeling to ascertain metal deposition parameters for the wire arc additive manufacturing of Incoloy 825. CIRP J Manuf Sci Technol. 2022;38:386–400. doi: 10.1016/j.cirpj.2022.05.008.
  • Kumar V, Mandal A, Das AK, et al. Parametric study and characterization of wire arc additive manufactured steel structures. Int J Adv Manuf Technol. 2021;115(5–6):1723–1733. doi: 10.1007/s00170-021-07261-6.
  • Chaudhari R, Parmar H, Vora J, et al. Parametric study and investigations of bead geometries of GMAW-based wire–arc additive manufacturing of 316L stainless steels. Metals. 2022;12(7):1232. doi: 10.3390/met12071232.
  • Singh S, Jinoop AN, Tarun Kumar GTA, et al. Effect of interlayer delay on the microstructure and mechanical properties of wire arc additive manufactured wall structures. Materials. 2021;14:4187. doi: 10.3390/ma14154187.
  • Ahsan MRU, Tanvir ANM, Ross T, et al. Fabrication of bimetallic additively manufactured structure (BAMS) of low carbon steel and 316L austenitic stainless steel with wire + arc additive manufacturing. Rapid Prototyp J. 2019;26(3):519–530. doi: 10.1108/RPJ-09-2018-0235.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.