59
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Study on the bond properties between basalt fiber-reinforced spontaneous combustion coal gangue concrete and BFRP bars

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2100-2127 | Received 16 Aug 2023, Accepted 16 Nov 2023, Published online: 11 Dec 2023

References

  • Wei J, Zhu P, Sun H. Ambient-dried silica aerogel powders derived from coal gangue by using one-pot method. Materials (Basel). 2022;15(4):1454. doi:10.3390/ma15041454.
  • Wang B, Ma Y, Lee X, et al. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer. Sci Total Environ. 2021;758:143664. doi:10.1016/j.scitotenv.2020.143664.
  • Zhao Y, Yang C, Li K, et al. Toward understanding the activation and hydration mechanisms of composite activated coal gangue geopolymer. Constr Build Mater. 2022;318:125999. doi:10.1016/j.conbuildmat.2021.125999.
  • Querol X, Izquierdo M, Monfort E, et al. Environmental characterization of burnt coal gangue banks at yangquan, shanxi province, China. Int J Coal Geol. 2008;75(2):93–104. doi:10.1016/j.coal.2008.04.003.
  • Li J, Wang J. Comprehensive utilization and environmental risks of coal gangue: a review. J Cleaner Prod. 2019;239:117946. doi:10.1016/j.jclepro.2019.117946.
  • Yu L, Xia J, Gu J, et al. Degradation mechanism of coal gangue concrete suffering from sulfate attack in the mine environment. Materials (Basel). 2023;16(3):1234. doi:10.3390/ma16031234.
  • Hao Y, Guo X, Yao X, et al. Using Chinese coal gangue as an ecological aggregate and its modification: a review. Materials (Basel). 2022;15(13):4495. doi:10.3390/ma15134495.
  • Gao S, Zhang S, Guo L. Application of coal gangue as a coarse aggregate in green concrete production: a review. Materials (Basel). 2021;14(22):6803. doi:10.3390/ma14226803.
  • Dong Z, Xia J, Fan C, et al. Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar. Constr Build Mater. 2015;100:63–69. doi:10.1016/j.conbuildmat.2015.09.050.
  • Gao S, Zhao G, Guo L, et al. Utilization of coal gangue as coarse aggregates in structural concrete. Constr Build Mater. 2021;268:121212. doi:10.1016/j.conbuildmat.2020.121212.
  • Zhang Y, Wang Q, Zhou M, et al. Mechanical properties of concrete with coarse spontaneous combustion gangue aggregate (SCGA): experimental investigation and prediction methodology. Constr Build Mater. 2020;255:119337. doi:10.1016/j.conbuildmat.2020.119337.
  • Zhou M, Wang Q, Mu S. The effects on workability of concrete mixture of spontaneous combustion coal gangue coarse aggregate characteristics. Non-Met. Mines. 2013;36:8–11.
  • Qin B, et al. Study on mechanical properties of cement mortar with different amount of coal gangue and activator Na2SO4. 2017 3rd International Forum on Energy, Environment Science and Materials (IFEESM 2017). Atlantis Press, 2018. doi:10.2991/ifeem-17.2018.217.
  • Zhou M, Dou Y, Zhang Y, et al. Effects of the variety and content of coal gangue coarse aggregate on the mechanical properties of concrete. Constr Build Mater. 2019;220:386–395. doi:10.1016/j.conbuildmat.2019.05.176.
  • Li Y, Liu S, Guan X. Multitechnique investigation of concrete with coal gangue. Constr Build Mater. 2021;301:124114. doi:10.1016/j.conbuildmat.2021.124114.
  • Salguero F, Grande JA, Valente T, et al. Recycling of manganese gangue materials from waste-dumps in the Iberian pyrite belt – application as filler for concrete production. Constr Build Mater. 2014;54:363–368. doi:10.1016/j.conbuildmat.2013.12.082.
  • Yang Z, Du Y, Liang Y, et al. Mechanical behavior of shape memory alloy fibers embedded in engineered cementitious composite matrix under cyclic pullout loads. Materials (Basel). 2022;15(13):4531. doi:10.3390/ma15134531.
  • Hameed R, Turatsinze A, Duprat F, et al. A study on the reinforced fibrous concrete elements subjected to uniaxial tensile loading. KSCE J Civ Eng. 2010;14(4):547–556. doi:10.1007/s12205-010-0547-0.
  • Kaufmann W. Strength and deformations of structural concrete subjected to in-plane shear and normal forces. Vol. 234. Basel: Birkhäuser Basel, 2013. doi:10.1007/978-3-0348-7612-4.
  • Zemir I, Debieb F, Kenai S, et al. Strengthening of ordinary vibrated concrete using steel fibers self-compacting concrete. J Adhes Sci Technol. 2020;34(14):1556–1571. doi:10.1080/01694243.2020.1712769.
  • Zhang J, Liu H, Liu G, et al. Influence on mechanical properties and microstructure analysis of hybrid fiber recycled aggregate concrete after exposure to elevated temperature. J Adhes Sci Technol. 2023;37(16):2328–2347. doi:10.1080/01694243.2022.2127251.
  • Latifi MR, Biricik Ö, Mardani Aghabaglou A. Effect of the addition of polypropylene fiber on concrete properties. J Adhes Sci Technol. 2022;36(4):345–369. doi:10.1080/01694243.2021.1922221.
  • Li VC, Maalej M. Toughening in cement based composites. Part II: fiber reinforced cementitious composites. Cem Concr Compos. 1996;18(4):239–249. doi:10.1016/0958-9465(95)00029-1.
  • Bonsu AO, Mensah C, Liang W, et al. Mechanical degradation and failure analysis of different glass/basalt hybrid composite configuration in simulated marine condition. Polymers (Basel). 2022;14(17):3480. doi:10.3390/polym14173480.
  • Zhou H, Jia B, Huang H, et al. Experimental study on basic mechanical properties of basalt fiber reinforced concrete. Materials (Basel). 2020;13(6):1362. doi:10.3390/ma13061362.
  • Kizilkanat AB, Kabay N, Akyüncü V, et al. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: an experimental study. Constr Build Mater. 2015;100:218–224. doi:10.1016/j.conbuildmat.2015.10.006.
  • Yang L, Xie H, Zhang D, et al. Acoustic emission characteristics and crack resistance of basalt fiber reinforced concrete under tensile load. Constr Build Mater. 2021;312:125442. doi:10.1016/j.conbuildmat.2021.125442.
  • Ma Q, Liu H, Liu G, et al. Experimental investigation of bond performance between BFRP and different strength recycled-aggregate concrete. J Adhes Sci Technol. 2022;37(18):2587–2607. doi:10.1080/01694243.2022.2149442.
  • Subhani M, Kumer Shill S, Garcez E. Effect of various rebar types and crushed glass coating onto BFRP rebar on the bond strength to concrete. J Adhes Sci Technol. 2023;37(14):2104–2122. doi:10.1080/01694243.2022.2117587.
  • Lee YH, Kim MS, Kim H, et al. Experimental study on bond strength of fiber reinforced polymer rebars in normal strength concrete. J Adhes Sci Technol. 2013;27(5-6):508–522. doi:10.1080/01694243.2012.687554.
  • Goyal A, Pouya HS, Ganjian E, et al. A review of corrosion and protection of steel in concrete. Arab J Sci Eng. 2018;43(10):5035–5055. doi:10.1007/s13369-018-3303-2.
  • Zou X, Lin H, Feng P, et al. A review on FRP-concrete hybrid sections for bridge applications. Compos Struct. 2021;262:113336. doi:10.1016/j.compstruct.2020.113336.
  • Li T, Zhu H, Wang Q, et al. Experimental study on the enhancement of additional ribs to the bond performance of FRP bars in concrete. Constr Build Mater. 2018;185:545–554. doi:10.1016/j.conbuildmat.2018.06.198.
  • El Refai A, Ammar M-A, Masmoudi R. Bond performance of basalt fiber-reinforced polymer bars to concrete. J. Compos. Constr. 2015;19(3):04014050. doi:10.1061/(ASCE)CC.1943-5614.0000487.
  • Chen L, Liang K, Shan Z. Experimental and theoretical studies on bond behavior between concrete and FRP bars with different surface conditions. Compos Struct. 2023;309:116721. doi:10.1016/j.compstruct.2023.116721.
  • China Building Materials Federation. Common Portland Cement. GB 175-2007. 2007.
  • China Building Materials Federation. Pebble and crushed stone for construction. GB/T 14685-2022. 2022.
  • Chinese Standard, J. G. J. JGJ 55-2011. Specification for mix proportion design of ordinary concrete. Beijing, China, 2011.
  • ACI Committee. Guide for test methods for fiber reinforced polymers (FRP) for reinforcing and strengthening concrete structures (ACI 440.3 R-12). ACI Committee 440 2012).
  • Chen J, Yuan Y, Zhu Q, et al. High-temperature resistance of high-strength concrete with iron tailing sand. J Build Eng. 2023;63:105544. doi:10.1016/j.jobe.2022.105544.
  • Liu P, Chen Y, Wang W, et al. Effect of physical and chemical sulfate attack on performance degradation of concrete under different conditions. Chem Phys Lett. 2020;745:137254. doi:10.1016/j.cplett.2020.137254.
  • ASTM D7913/D7913M-14. Standard test method for bond strength of fiber-reinforced polymer matrix composite bars to concrete by pullout testing. 2014.
  • Wang F, Wu X, Guo C, et al. Experimental study on bond strength of deformed steel bars in recycled glass aggregate concrete. KSCE J Civ Eng. 2018;22(9):3409–3418. doi:10.1007/s12205-018-0051-5.
  • Liu H, Li W, Luo G, et al. Mechanical properties and fracture behavior of crumb rubber basalt fiber concrete based on acoustic emission technology. Sensors (Basel). 2020;20(12):3513. doi:10.3390/s20123513.
  • Zhu M, Qiu J, Chen J. Effect and mechanism of coal gangue concrete modification by basalt fiber. Constr Build Mater. 2022;328:126601. doi:10.1016/j.conbuildmat.2022.126601.
  • Liu S, et al. Bond behavior of reinforced concrete considering freeze–thaw cycles and corrosion of stirrups. Materials. 2021;14(16):4732. doi:10.3390/ma14164732.
  • Malvar LJ. Bond stress-slip characteristics of FRP rebars. Port Hueneme, California, USA: Naval Facilities Engineering Service Center, 1994.
  • Cosenza E, Manfredi G, Realfonzo R. 20 analytical modelling of bond between FRP reinforcing bars and concrete. Non-metallic (FRP) reinforcement for concrete structures proceedings of the second international RILEM symposium. CRC Press, 1995; p. 164.
  • Cosenza E. Bond characteristics and anchorage length of FRP rebars. In: M El-Badry, editor. Proceedings of the 2nd International Conference on Advanced Composite Materials in Bridges and Structures, 1996, p. 909–916.
  • Cosenza E, Manfredi G, Realfonzo R. Behavior and modeling of bond of FRP rebars to concrete. J Compos Constr. 1997;1(2):40–51. doi:10.1061/(ASCE)1090-0268(1997)1:2(40).
  • Gao DY, Zhu HT, Xie JJ. The constitutive models for bond slip relation between FRP rebars and concrete. Ind Constr 2003;33(7):41–43.
  • Hao Q, et al. Bond-slip constitutive model between GFRP/STEEL wire composite rebars and concrete. Eng Mech. 2009;26(05):62–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.