141
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of in situ and padding method to incorporate Green synthesized AgNPs by using Calendula arvensis into nonwoven fabrics

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2047-2064 | Received 03 Jul 2023, Accepted 25 Nov 2023, Published online: 22 Dec 2023

References

  • Maurya IC, Singh S, Senapati S, et al. Green synthesis of TiO2 nanoparticles using Bixa orellana seed extract and its application for solar cells. Sol Energy. 2019;194:952–958. doi: 10.1016/j.solener.2019.10.090.
  • Kanchi S, Ahmed S, editors. Green metal nanoparticles: synthesis, characterization and their applications. Hoboken (NJ): Wiley-Scrivener; 2018.
  • Jemilugba OT, Sakho EHM, Parani S, et al. Green synthesis of silver nanoparticles using combretum erythrophyllum leaves and its antibacterial activities. Colloid Interface Sci Commun. 2019;31:100191. doi: 10.1016/j.colcom.2019.100191.
  • Hamedi S, Shojaosadati SA. Rapid and green synthesis of silver nanoparticles using diospyros lotus extract: evaluation of their biological and catalytic activities. Polyhedron. 2019;171:172–180. doi: 10.1016/j.poly.2019.07.010.
  • Paosen S, Saising J, Wira Septama A, et al. Green synthesis of silver nanoparticles using plants from Myrtaceae family and characterization of their antibacterial activity. Mater Lett. 2017;209:201–206. doi: 10.1016/j.matlet.2017.07.102.
  • Sherin L, Sohail A, Amjad U-S, et al. Facile green synthesis of silver nanoparticles using Terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants. Colloid Interface Sci. Commun. 2020;37:100276. doi: 10.1016/j.colcom.2020.100276.
  • Rahimi-Nasrabadi M, Pourmortazavi SM, Shandiz SAS, et al. Green synthesis of silver nanoparticles using eucalyptus leucoxylon leaves extract and evaluating the antioxidant activities of extract. Nat Prod Res. 2014;28(22):1964–1969. doi: 10.1080/14786419.2014.918124.
  • Taha IM, Zaghlool A, Nasr A, et al. Impact of starch coating embedded with silver nanoparticles on strawberry storage time. Polymers. 2022;14(7):1439. doi: 10.3390/polym14071439.
  • Windler L, Height M, Nowack B. Comparative evaluation of antimicrobials for textile applications. Environ Int. 2013;53:62–73. doi: 10.1016/j.envint.2012.12.010.
  • Zhuang X, Cheng B, Kang W, et al. Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydr Polym. 2010;82(2):524–527. doi: 10.1016/j.carbpol.2010.04.085.
  • Zhao G, Stevens SE. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals. 1998;11(1):27–32. doi: 10.1023/A:1009253223055.
  • Maghimaa M, Alharbi SA. Green synthesis of silver nanoparticles from curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity. J Photochem Photobiol B. 2020;204:111806. doi: 10.1016/j.jphotobiol.2020.111806.
  • Fahmy A, Eisa WH, Yosef M, et al. Ultra-Thin films of poly(acrylic acid)/silver nanocomposite coatings for antimicrobial applications. J. Spectrosc. 2016a;2016:1–11. doi: 10.1155/2016/7489536.
  • Fahmy A, El-Zomrawy A, Saeed AM, et al. One-step synthesis of silver nanoparticles embedded with polyethylene glycol as thin films. J Adhes Sci Technol. 2017;31(13):1422–1440. doi: 10.1080/01694243.2016.1259728.
  • Fahmy A, Friedrich J, Poncin-Epaillard F, et al. Plasma polymerized allyl alcohol/O2 thin films embedded with silver nanoparticles. Thin Solid Films. 2016b;616:339–347. doi: 10.1016/j.tsf.2016.08.045.
  • Aladpoosh R, Montazer M, Samadi N. In situ green synthesis of silver nanoparticles on cotton fabric using Seidlitzia rosmarinus ashes. Cellulose. 2014;21(5):3755–3766. doi: 10.1007/s10570-014-0369-1.
  • Bonaldi RR. Chapter 6 – Functional finishes for high-performance apparel. In: McLoughlin J, Sabir T, editors. High-performance apparel, Woodhead publishing series in textiles. Duxford: Woodhead Publishing; 2018. pp. 129–156. doi: 10.1016/B978-0-08-100904-8.00006-7.
  • Lindsley WG, Blachere FM, Law BF, et al. Efficacy of face masks, neck gaiters and face shields for reducing the expulsion of simulated cough-generated aerosols. Aerosol Sci Technol. 2021;55(4):449–457. doi: 10.1080/02786826.2020.1862409.
  • Karim N, Afroj S, Lloyd K, et al. Sustainable personal protective clothing for healthcare applications: a review. ACS Nano. 2020;14(10):12313–12340. doi: 10.1021/acsnano.0c05537.
  • Chin AWH, Chu JTS, Perera MRA, et al. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe. 2020;1(1):e10. doi: 10.1016/S2666-5247(20)30003-3.
  • Gupta D. Antimicrobial treatments for textiles. IJFTR. 2007;322:254–263.
  • Ahmed T, Ogulata RT, Gülnaz O. Investigations on different sol-gel incorporation methods of green synthesized AgNPs in textiles for antibacterial activity. Text Leather Rev. 2023;6:452–474. doi: 10.31881/TLR.2023.088.
  • Khouchlaa A, El Baaboua A, El Moudden H, et al. Traditional uses, bioactive compounds, and pharmacological investigations of calendula arvensis L.: a comprehensive review. Adv Pharmacol Pharm Sci. 2023;2023:e2482544. doi: 10.1155/2023/2482544.
  • Patil NA, Gore PM, Jaya Prakash N, et al. Needleless electrospun phytochemicals encapsulated nanofibre based 3-ply biodegradable mask for combating COVID-19 pandemic. Chem Eng J. 2021;416:129152. doi: 10.1016/j.cej.2021.129152.
  • Hutten IM. Testing of nonwoven filter media. In Irwin M. Hutten (Ed), Handbook of nonwoven filter media. Elsevier, Amsterdam Heidelberg; 2007. pp. 245–290. doi: 10.1016/B978-185617441-1/50021-4.
  • Fahmy A, El-Zomrawy A, Saeed AM, et al. Degradation of organic dye using plasma discharge: optimization, pH and energy. Plasma Res Express. 2020;2(1):015009. doi: 10.1088/2516-1067/ab6703.
  • Fahmy A, El-Zomrawy A, Saeed AM, et al. Modeling and optimizing acid orange 142 degradation in aqueous solution by non-thermal plasma. Chemosphere. 2018;210:102–109. doi: 10.1016/j.chemosphere.2018.06.176.
  • Coates J. 2006. Interpretation of infrared spectra, a practical approach. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: John Wiley & Sons, Ltd. p. a5606. doi: 10.1002/9780470027318.a5606.
  • Lin Q, Liu S, Wang X, et al. Preparation of ultra-conductive bamboo cellulose fiber via a facile pretreatment. Appl Surf Sci. 2022;575:151700. doi: 10.1016/j.apsusc.2021.151700.
  • Haberhauer G, Rafferty B, Strebl F, et al. Comparison of the composition of Forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy. Geoderma. 1998;83(3–4):331–342. doi: 10.1016/S0016-7061(98)00008-1.
  • Mecozzi M, Nisini L. The differentiation of biodegradable and non-biodegradable polyethylene terephthalate (PET) samples by FTIR spectroscopy: a potential support for the structural differentiation of PET in environmental analysis. Infrared Phys Technol. 2019;101:119–126. doi: 10.1016/j.infrared.2019.06.008.
  • Ider M, Abderrafi K, Eddahbi A, et al. Silver metallic nanoparticles with surface plasmon resonance: synthesis and characterizations. J Clust Sci. 2017;28(3):1051–1069. doi: 10.1007/s10876-016-1080-1.
  • Riaz M, Mutreja V, Sareen S, et al. Exceptional antibacterial and cytotoxic potency of monodisperse greener AgNPs prepared under optimized pH and temperature. Sci Rep. 2021;11(1):2866. doi: 10.1038/s41598-021-82555-z.
  • He S, Yao J, Jiang P, et al. Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice. Langmuir. 2001;17(5):1571–1575. doi: 10.1021/la001239w.
  • Darroudi M, Ahmad MB, Zamiri R, et al. Time-dependent effect in green synthesis of silver nanoparticles. Int J Nanomed. 2011;6:677–681. doi: 10.2147/IJN.S17669.
  • Jia N, Kagan VA. 2001. Mechanical performance of polyamides with influence of moisture and temperature – accurate evaluation and better understanding. In: Moalli J, editor. Plastics failure analysis and prevention. New York: Elsevier. pp. 95–104. doi: 10.1016/B978-188420792-1.50014-7.
  • Chrissopoulou K, Anastasiadis SH. Polyolefin/layered silicate nanocomposites with functional compatibilizers. Eur Polym J. 2011;47(4):600–613. doi: 10.1016/j.eurpolymj.2010.09.028.
  • Jeong SH, Hwang YH, Yi SC. Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids. J Mater Sci. 2005;40(20):5413–5418. doi: 10.1007/s10853-005-4340-2.
  • Yang N, Li W-H. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind Crops Prod. 2013;48:81–88. doi: 10.1016/j.indcrop.2013.04.001.
  • Jinka S, Behrens R, Korzeniewski C, et al. Atmospheric pressure plasma treatment and breathability of polypropylene nonwoven fabric. J Ind Text. 2013;42(4):501–514. doi: 10.1177/1528083712464257.
  • Regis S, Jassal M, Mukherjee N, et al. Altering surface characteristics of polypropylene mesh via sodium hydroxide treatment. J Biomed Mater Res A. 2012;100(5):1160–1167. doi: 10.1002/jbm.a.34057.
  • Ahmed T, Ogulata RT, Gülnaz O. Recoverable antibacterial property loss of green synthesized AgNPs loaded cotton fabrics with time. Results Chem. 2022;4:100462. doi: 10.1016/j.rechem.2022.100462.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.