75
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Strengthening the HAZ of an MIG welded joint of 6082-T6 aluminum alloy via mechanical-thermal hybrid aging treatment

, , , &
Pages 2241-2255 | Received 11 Aug 2023, Accepted 27 Nov 2023, Published online: 06 Dec 2023

References

  • Wang D, Zhang CS, Wang CX, et al. Application and analysis of spread die and flat container in the extrusion of a large-size, hollow, and flat-wide aluminum alloy profile[. Int J Adv Manuf Technol. 2018;94(912):4247–4263. doi:10.1007/s00170-017-1127-y.
  • Liu F, Yu FX, Zhao DZ, et al. Microstructure and mechanical properties of an Al-12.7Si-0.7Mg alloy processed by extrusion and heat treatment. Mater Sci Eng, A. 2011;528(1011):3786–3790. doi:10.1016/j.msea.2011.01.041.
  • Hashmi AW, Mehdi H, Mabuwa S, et al. Influence of FSP parameters on wear and microstructural characterization of dissimilar TIG welded joints with Si-rich filler metal. Silicon. 2022;14(17):11131–11145. doi:10.1007/s12633-022-01848-8.
  • Gallais C, Denquin A, Brechet Y, et al. Precipitation microstructure in an AA6056 aluminium alloy after friction stir welding: characterisation and modelling. Mater Sci Eng, A. 2008;496(12):77–89. doi:10.1016/j.msea.2008.06.033.
  • Hu YY, Liu HJ, Fujii H, et al. Vacancy-induced θ′ precipitation during ultrasonic-affected friction stir welding of Al-Cu alloy. J Mater Sci. 2020;55(29):14626–14641. doi:10.1007/s10853-020-05061-z.
  • Bagheri B, Abbasi M, Dadaei M. Mechanical behavior and microstructure of AA6061-T6 joints made by friction stir vibration welding. J. of Materi Eng and Perform. 2020;29(2):1165–1175. doi:10.1007/s11665-020-04639-7.
  • Liu HJ, Zhao YQ, Hu YY, et al. Microstructural characteristics and mechanical properties of friction stir lap welding joint of alclad 7B04-T74 aluminum alloy. Int J Adv Manuf Technol. 2015;78(912):1415–1425. doi:10.1007/s00170-014-6718-2.
  • Mabuwa S, Msomi V, Mehdi H, et al. Effect of material positioning on Si-rich TIG welded joints of AA6082 and AA8011 by friction stir processing. J Adhes Sci Technol. 2023;37(17):2484–2502. doi:10.1080/01694243.2022.2142366.
  • Song XG, Niu CN, Hu SP, et al. Contact reactive brazing of Al7075 alloy using Cu layer deposited by magnetron sputtering. J Mater Process Technol. 2018;252:469–476. doi:10.1016/j.jmatprotec.2017.10.002.
  • Nitoi D, Dobrota D, Apostolescu Z. Researches and studies regarding brazed aluminum alloy microstructure used in aeronautic industry. J Mater Eng Perform. 2015;54(2):383–386.
  • von Witzendorff P, Kaierle S, Suttmann O, et al. Using pulse shaping to control temporal strain development and solidification cracking in pulsed laser welding of 6082 aluminum alloys. J Mater Process Technol. 2015;225:162–169. doi:10.1016/j.jmatprotec.2015.06.007.
  • Radel T, Woizeschke P. Reduction of hot cracking susceptibility during laser welding of aluminum by vibrations. Weld World. 2019;63(3):599–606. doi:10.1007/s40194-018-00680-2.
  • Yu HS, Zhan XH, Kang Y, et al. Numerical simulation optimization for laser welding parameter of 5A90 Al-Li alloy and its experiment verification. J Adhes Sci Technol. 2019;33(2):137–155. doi:10.1080/01694243.2018.1516503.
  • Cheng JW, Song G, Zhang ZD, et al. Improving heat-affected zone softening of aluminum alloys by in-situ cooling and post-weld rolling. J Mater Process Technol. 2022;306:117639–117653. doi:10.1016/j.jmatprotec.2022.117639.
  • Lu ZP, Xu JH, Yu LH, et al. Studies on softening behavior and mechanism of heat-affected zone of spray formed 7055 aluminum alloy under TIG welding. J Mater Res Technol. 2022;18:1180–1190. doi:10.1016/j.jmrt.2022.03.074.
  • Lin YT, Wang MC, Zhang Y, et al. Investigation of microstructure evolution after post-weld heat treatment and cryogenic fracture toughness of the weld metal of AA2219 VPTIG joints. Mater Des. 2017;113:54–59. doi:10.1016/j.matdes.2016.10.010.
  • Cheng JW, Zhang ZD, Dong XN, et al. A novel post-weld composite treatment process for improving the mechanical properties of AA 6061-T6 aluminum alloy welded joints. J Manuf Processes. 2022;82:15–22. doi:10.1016/j.jmapro.2022.07.057.
  • Tewari SP, Shanker A. Effects of longitudinal vibration on tensile properties of weldments. Weld J. 1994;73:272–276.
  • Tewari SP, Shanker A. Microstructural changes associated with vibratory prepared weldments. J Mater Sci Lett. 1993;12(17):1335–1336. doi:10.1007/BF00241699.
  • Hsieh CC, Lai CH, Wu WT. Effect of vibration on microstructures and mechanical properties of 304 stainless steel GTA welds. Met. Mater. Int. 2013;19(4):835–844. doi:10.1007/s12540-013-4026-2.
  • Ilman MN, Widodo A, Triwibowo NA. Metallurgical, mechanical and corrosion characteristics of vibration assisted gas metal arc AA6061-T6 welded joints. Journal Adv Join Process. 2022;6:100129–100142. doi:10.1016/j.jajp.2022.100129.
  • Tamasgavabari R, Ebrahimi AR, Abbasi SM, et al. Effect of harmonic vibration during gas metal arc welding of AA-5083 aluminum alloy on the formation and distribution of intermetallic compounds. J Manuf Processes. 2020;49:413–422. doi:10.1016/j.jmapro.2019.12.003.
  • Ilman, M.N., Sriwijaya, R.A., Muslih, M.R., Triwibowo, N.A.,. Strength and fatigue crack growth behaviours of metal inert gas AA5083-H116 welded joints under in-process vibrational treatment. JManuf Processes, 2020, 59: 727–738. doi:10.1016/j.jmapro.2020.10.035.
  • Baskutis S, Žunda A, Kreivaitis R. Mechanical properties and microstructure of aluminium alloy AW6082-T6 joints welded by double-sided MIG process before and after aging.]Mech. 2019;25(2):107–113. doi:10.5755/j01.mech.25.2.22008.
  • Tian YB, Shen JQ, Hu SS, et al. Effects of ultrasonic vibration in the CMT process on welded joints of Al alloy. J Mater Process Technol. 2018;259(6):282–291. doi:10.1016/j.jmatprotec.2018.05.004.
  • Lai YX, Jiang BC, Liu CH, et al. Low-alloy-correlated reversal of the precipitation sequence in Al-Mg-Si alloys. J Alloys Compd. 2017;701:94–98. doi:10.1016/j.jallcom.2017.01.095.
  • Ding LD, Jia ZH, Nie JF, et al. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy. Acta Mater. 2018;145:437–450. doi:10.1016/j.actamat.2017.12.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.