110
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Enhancing adhesion of fluorinated ethylene propylene through atmospheric pressure nitrogen plasma treatment: a comprehensive adhesive selection approach for optimal peel strength characterization

, , , , , & ORCID Icon show all
Pages 2497-2516 | Received 02 Aug 2023, Accepted 05 Jan 2024, Published online: 22 Jan 2024

References

  • Ebnesajjad S. Fluoroplastics. Vol. 1: Non-melt processible fluoropolymers - The definitive user’s guide and data book. 2nd ed.; William Andrew Publishing, Elsevier: Waltham (MA); 2015. doi: 10.1016/C2012-0-05997-2.
  • Améduri B. The promising future of fluoropolymers. Macro Chem Phys. 2020;221(8):1900573. doi: 10.1002/macp.201900573.
  • Kang ET, Zhang Y. Surface modification of fluoropolymers via molecular design. Adv Mater. 2000;12(20):1481–1494. doi: 10.1002/1521-4095(200010)12:20<1481::AID-ADMA1481>3.0.CO;2-Z.
  • Mathieson I, Brewis DM, Sutherland I, et al. Pretreatments of fluoropolymers. J Adhes. 1994;46(1-4):49–56. doi: 10.1080/00218469408026648.
  • Siperko LM, Thomas RR. Chemical and physical modification of fluoropolymer surfaces for adhesion enhancement: a review. Adv Sci Technol. 1989;3(1):157–173. doi: 10.1163/156856189X00137.
  • Okubo M, Onji T, Kuroki T, et al. Molecular-level reinforced adhesion between rubber and PTFE film treated by atmospheric plasma. Plasma Chem Plasma Process. 2016;36(6):1431–1448. doi: 10.1007/s11090-016-9738-x.
  • Ohkubo Y, Ishihara K, Shibahara M, et al. Drastic improvement in adhesion property of polytetrafluoroethylene (PTFE) via heat-assisted plasma treatment using a heater. Sci Rep. 2017;7(1):9476. doi: 10.1038/s41598-017-09901-y.
  • Ohkubo Y, Ishihara K, Sato H, et al. Adhesive-free adhesion between polytetrafluoroethylene (PTFE) and isobutylene– isoprene rubber (IIR) via heat-assisted plasma treatment. RSC Adv. 2017;7(11):6432–6438. doi: 10.1039/C6RA27642C.
  • Tanaka K, Inomata T, Kogoma M. Improvement in adhesive strength of fluorinated polymer films by atmospheric pressure glow plasma. Thin Solid Films. 2001;386(2):217–221. doi: 10.1016/S0040-6090(00)01653-9.
  • Kogoma M, Takahashi K, Tanaka K. Surface treatment of fluorinated polymers using atmospheric pressure glow discharge system. J Photopol Sci Technol. 2016;29(3):421–425. doi: 10.2494/photopolymer.29.421.
  • Ohkubo Y, Endo K, Yamamura K. Adhesive-free adhesion between heat-assisted plasma-treated fluoropolymers (PTFE, PFA) and plasma-jet-treated polydimethylsiloxane (PDMS) and its application. Sci Rep. 2018;8(1):18058. doi: 10.1038/s41598-018-36469-y.
  • Ohkubo Y, Shibahara M, Ishihara K, et al. Effect of rubber compounding agent on adhesion strength between rubber and heat-assisted plasma-treated polytetrafluoroethylene (PTFE). J Adhes. 2018;95(3):242–257. doi: 10.1080/00218464.2018.1428095.
  • Zou XP, Kang ET, Neoh KG, et al. Surface modifcation of poly(tetrafuoroethylene) flms by plasma polymerization of glycidyl methacrylate for adhesion enhancement with evaporated copper. Polymer (Guildf). 2001;42(15):6409–6418. doi: 10.1016/S0032-3861(01)00113-6.
  • Li C-L, Tu C-Y, Huang J-S, et al. Surface modification and adhesion improvement of expanded poly (tetrafluoroethylene) films by plasma graft polymerization. Surf Coat Technol. 2006;201(1-2):63–72. doi: 10.1016/j.surfcoat.2005.10.041.
  • Park YW, Tasaka S, Inagaki N. Surface modification of tetrafluoroethylene – hexafluoropropylene (FEP) copolymer by remote H2, N2, O2, and Ar plasmas. J Appl Polym Sci. 2002;83(6):1258–1267. doi: 10.1002/app.2293.
  • Caceres W, Destrieux A, Profili J, et al. Homogeneity study of fluoropolymer films modified by atmospheric pressure nitrogen plasma discharges. Polym Technol Mater. 2023;63(2):120–133. doi: 10.1080/25740881.2023.2277388.
  • Destrieux A, Profili J, Laurent M, et al. Evolution of the electrical characteristics of an atmospheric pressure dielectric barrier discharge system over one hour operation. J Phys D: Appl Phys. 2023;57(5):055201. doi: 10.1088/1361-6463/ad06eb.
  • Peeters F, Butterworth T. Atmospheric Pressure Plasma - from Diagnostics to Applications, Chapter 2: Electrical diagnostics of dielectric barrier discharges, 2–8. IntechOpen. 2018; doi: 10.5772/INTECHOPEN.80433.
  • Wang R, Yang Y, Chen S, et al. Power calculation of pulse power-Driven DBD plasma. IEEE Trans Plasma Sci. 2021;49(7):2210–2216. doi: 10.1109/TPS.2021.3084601.
  • Fowkes FM. Attractive forces at interfaces. Ind Eng Chem. 1964;56(12):40–52. doi: 10.1021/ie50660a008.
  • Crassous I, Groult H, Lantelme F, et al. Study of the fluorination of carbon anode in molten KF-2HF by XPS and NMR investigations. J Fluor Chem. 2009;130(12):1080–1085. doi: 10.1016/j.jfluchem.2009.07.022.
  • Brzhezinskaya MM, Muradyan VE, Vinogradov NA, et al. Electronic structure of fluorinated multiwalled carbon nanotubes studied using X-ray absorption and photoelectron spectroscopy. Phys Rev B. 2009;79(15):1–12. doi: 10.1103/PhysRevB.79.155439.
  • Voinkova IV, Ginchitskii NN, Gribov IV, et al. A model of radiation-induced degradation of the poly(vinylidene fluoride) surface during XPS measurements. Polym Degrad Stab. 2005;89(3):471–477. doi: 10.1016/j.polymdegradstab.2005.01.027.
  • Carraro G, Gasparotto A, Maccato C, et al. Fluorine-doped iron oxide nanomaterials by plasma enhanced-CVD: an XPS study. Surf Sci Spectra. 2013;20(1):9–16. doi: 10.1116/11.20130101.
  • Beamson G, Briggs D. High resolution XPS of organic polymers. 1992;70:226-235.
  • Vandencasteele N, Reniers F. Surface characterization of plasma-treated PTFE surfaces: an OES, XPS and contact angle study. Surf Interface Anal. 2004;36(8):1027–1031. doi: 10.1002/sia.1829.
  • Grill A, Neumayer DA. Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization. J Appl Phys. 2003;94(10):6697–6707. doi: 10.1063/1.1618358.
  • Muthuselvi C, Pandiaraja SS, Ravikumar B, et al. FT-IR and FT-Raman spectroscopic analyzes of indeno quinoxaline derivative crystal. Asian J Appl Sci. 2018;11(2):83–91. doi: 10.3923/ajaps.2018.83.91.
  • Gorassini A, Adami G, Calvini P, et al. ATR-FTIR characterization of old pressure sensitive adhesive tapes in historic papers. J Cult Herit. 2016;21:775–785. doi: 10.1016/j.culher.2016.03.005.
  • Chércoles Asensio R, San Andrés Moya M, De La Roja JM, et al. Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Anal Bioanal Chem. 2009;395(7):2081–2096. doi: 10.1007/S00216-009-3201-2/FIGURES/12.
  • Owen MJ. Silicone surface fundamentals. Macromol Rapid Commun. 2021;42(5):2000360. doi: 10.1002/marc.202000360.
  • White CC, Tan K, Wolf AT, et al. Advances in structural silicone adhesives. In: Dillard DA, editor. Advances in structural adhesive bonding. Woodhead Publishing in Materials, Advances in Structural Adhesive Bonding, Woodhead Publishing;Cambridge, Massachusetts. 2010; p. 66–95. doi: 10.1533/9781845698058.1.66.
  • Deng X. Progress on rubber-based pressure-sensitive adhesives. J Adhes. 2018;94(2):77–96. doi: 10.1080/00218464.2016.1249573.
  • Fischer H, Barbas J, Kahn L. Mechanical treatment. In: Surface Treatment in Bonding Technology. Academic Press: 5; 2019; p. 87–128. doi: 10.1016/B978-0-12-817010-6.00005-9.
  • Kaur A, Chahal P, Hogan T. Selective fabrication of SiC/Si diodes by excimer laser under ambient conditions. IEEE Electron Device Lett. 2016;37(2):142–145. doi: 10.1109/LED.2015.2508479.
  • Liao Y, Weng Y, Wang J, et al. Silicone rubber composites with high breakdown strength and low dielectric loss based on polydopamine coated mica. Polymers (Basel). 2019;11(12):2030. doi: 10.3390/POLYM11122030.
  • Bansala T, Joshi M, Mukhopadhyay S, et al. Electrically conducting graphene-based polyurethane nanocomposites for microwave shielding applications in the Ku band. J Mater Sci. 2017;52(3):1546–1560. doi: 10.1007/s10853-016-0449-8.
  • Rezaeian I, Zahedi P, Rezaeian A. Rubber adhesion to different substrates and its importance in industrial applications: a review. J Adhes Sci Technol. 2012;26(6):721–744. doi: 10.1163/016942411X579975.
  • Rezaeian I, Zahedi P, Rezaeian A. Journal of adhesion science and rubber adhesion to different substrates and its importance in industrial applications : a review rubber adhesion to different substrates and its importance in industrial applications : a review. J. Adhes Sci Technol. 2011;26(6):721–744. (2012), doi: 10.1163/016942411X579975.
  • Gélinas A, Profili J, Fotouhiardakani F, et al. Toward a better interpretation of the partial least squares regression models for fluoropolymers treated by dielectric barrier discharges at atmospheric pressure. Plasma Process Polym. 2023, e2300098. doi: 10.1002/ppap.202300098.
  • Cortet PP, Dalbe MJ, Guerra C, et al. Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller. Phys Rev E. 2013;87(2):022601. doi: 10.1103/PHYSREVE.87.022601/FIGURES/7/MEDIUM.
  • Zhao B, Pelton R. Peel adhesion to Paper - Interpreting peel curves. J Adhes Sci Technol. 2003;17(6):815–830. doi: 10.1163/156856103321645176.
  • Giannis S, Adams RD, Clark LJ, et al. Peel behaviour of aircraft fuel tank sealants: the effect of peel angle, sealant layer thickness and peel rate. J Adhes Sci Technol. 2008;22(13):1495–1522. doi: 10.1163/156856108X309521.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.