50
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Optimizing microstructures and properties of PEO coatings on sandblasted pure titanium: the influence of jet angle

, , , &
Pages 2533-2545 | Received 10 Aug 2023, Accepted 10 Jan 2024, Published online: 30 Jan 2024

References

  • Wang H-Y, Zhu R-F, Lu Y-P, et al. Effect of sandblasting intensity on microstructures and properties of pure titanium micro-arc oxidation coatings in an optimized composite technique. Appl Surf Sci. 2014;292:204–212. doi: 10.1016/j.apsusc.2013.11.115.
  • Zhang W, Xu J. Advanced lightweight materials for automobiles: a review. Mater Des. 2022;221:110994. doi: 10.1016/j.matdes.2022.110994.
  • Villechaise P, Takahashi K, Mori K, et al. Application of titanium and its alloys for automobile parts. MATEC Web Conf. 2020;321:02003.
  • Aliofkhazraei M, Macdonald DD, Matykina E, et al. Review of plasma electrolytic oxidation of titanium substrates: mechanism, properties, applications and limitations. Appl Surf Sci Adv. 2021;5:100121. doi: 10.1016/j.apsadv.2021.100121.
  • Sukuroglu EE, Farzi H, Sukuroglu S, et al. The effect of plasma electrolytic oxidation process parameters on the tribocorrosion properties of TiO2 coatings. J Adhes Sci Technol. 2017;31(12):1361–1373. doi: 10.1080/01694243.2016.1256635.
  • Adeleke SA, Bushroa A, Kusumawan Herliansyah M, et al. Preparation, scratch adhesion, and anti-corrosion performance of TiO2-MgO-BHA coating on Ti6Al4V implant by plasma electrolytic oxidation technique. J Adhes Sci Technol. 2018;32(1):91–102. doi: 10.1080/01694243.2017.1341772.
  • Qadir M, Li Y, Wen C. Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: a review. Acta Biomater. 2019;89:14–32. doi: 10.1016/j.actbio.2019.03.006.
  • Song C, Liu M, Deng Z-Q, et al. A novel method for in-situ synthesized TiN coatings by plasma spray-physical vapor deposition. Mater Lett. 2018;217:127–130. doi: 10.1016/j.matlet.2018.01.068.
  • Xiao G, Zeng H, Xu S, et al. Preparation of Ti species coating hydrotalcite by chemical vapor deposition for photodegradation of azo dye. J Environ Sci (China). 2017;60:14–23. doi: 10.1016/j.jes.2017.03.031.
  • Niu Z, Zhou W, Wang C, et al. Fretting wear mechanism of plasma-sprayed CuNiIn coating on Ti-6Al-4V substrate under plane/plane contact. Surf Coat Technol. 2021;408:126794.
  • Pesode P, Barve S. Surface modification of titanium and titanium alloy by plasma electrolytic oxidation process for biomedical applications: a review. Mater Today: Proc. 2021;46:594–602.
  • Bellman R, Levy A. Erosion mechanism in ductile metals. Wear. 1981;70(1):1–27. doi: 10.1016/0043-1648(81)90268-4.
  • Hutchings IM. A model for the erosion of metals by spherical particles at normal incidence. Wear. 1981;70(3):269–281. doi: 10.1016/0043-1648(81)90347-1.
  • Fang CK, Chuang THJW. Surface morphologies and erosion rates of metallic building materials after sandblasting. Wear. 1999;230(2):156–164. doi: 10.1016/S0043-1648(99)00097-6.
  • He W, Yin X, Xie L, et al. Enhancing osseointegration of titanium implants through large-grit sandblasting combined with micro-arc oxidation surface modification. J Mater Sci Mater Med. 2019;30:73.
  • Ma L, Li M, Komasa S, et al. Characterization of hydroxyapatite film obtained by Er: YAG pulsed laser deposition on sandblasted titanium: an in vitro study. Materials. 2022;15(6):2306. doi: 10.3390/ma15062306.
  • Schupbach P, Glauser R, Bauer S. Al 2 O 3 particles on titanium dental implant systems following sandblasting and Acid-Etching process. Int J Biomater. 2019;2019:1–11. doi: 10.1155/2019/6318429.
  • Wang H-Y, Zhu R-F, Lu Y-P, et al. Preparation and properties of plasma electrolytic oxidation coating on sandblasted pure titanium by a combination treatment. Mater Sci Eng C Mater Biol Appl. 2014;42:657–664. doi: 10.1016/j.msec.2014.06.005.
  • Kaseem M, Fatimah S, Nashrah N, et al. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performance. Prog Mater Sci. 2021;117:100735. doi: 10.1016/j.pmatsci.2020.100735.
  • Wang H-Y, Zhu R-F, Lu Y-P, et al. Preparation and mechanism of controllable micropores on bioceramic TiO2 coatings by plasma electrolytic oxidation. Surf Rev Lett. 2013;20(05):1350051. doi: 10.1142/S0218625X13500510.
  • Wei P, Chen L, Li X, et al. Development of self-healing functional micro-arc oxidation coating on magnesium alloys: a review. J Adhes Sci Technol. 2023:1–23. doi: 10.1080/01694243.2023.2251759.
  • Chen L, Zhao R, Qi H, et al. Influence of voltage modes on microstructure and corrosion resistance of micro-arc oxidation coating on magnesium alloy. J Adhes Sci Technol. 2023;37(15):2232–2246. doi: 10.1080/01694243.2022.2122294.
  • Kucukosman R, Sukuroglu EE, Totik Y, et al. Effects of graphene oxide addition on wear behaviour of composite coatings fabricated by plasma electrolytic oxidation (PEO) on AZ91 magnesium alloy. J Adhes Sci Technol. 2021;35(3):242–255. doi: 10.1080/01694243.2020.1800289.
  • Yerokhin AL, Lyubimov VV, Ashitkov RV. Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys. Ceram Int. 1998;24(1):1–6. doi: 10.1016/S0272-8842(96)00067-3.
  • Jiang XP, Wang XY, Li JX, et al. Enhancement of fatigue and corrosion properties of pure Ti by sandblasting. Mater Sci Eng. 2006;429(1-2):30–35. doi: 10.1016/j.msea.2006.04.024.
  • Wang YM, Jiang BL, Lei TQ, et al. Microarc oxidation coatings formed on Ti6Al4V in Na2SiO3 system solution: microstructure, mechanical and tribological properties. Surf Coat Technol. 2006;201(1-2):82–89. doi: 10.1016/j.surfcoat.2005.10.044.
  • Wang J, Ma Y, Guan J, et al. Characterizations of anodic oxide films formed on Ti6Al4V in the silicate electrolyte with sodium polyacrylate as an additive. Surf Coat Technol. 2018;338:14–21. doi: 10.1016/j.surfcoat.2018.01.076.
  • Stojadinović S, Vasilić R, Petković M, et al. Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate. Appl Surf Sci. 2013;265:226–233. doi: 10.1016/j.apsusc.2012.10.183.
  • Hanaor D, Sorrell C. Review of the anatase to rutile phase transformation. J Mater Sci. 2011;46(4):855–874. doi: 10.1007/s10853-010-5113-0.
  • Kim S-P, Kaseem M, Choe H-C. Plasma electrolytic oxidation of Ti-25Nb-xTa alloys in solution containing Ca and P ions. Surf Coat Technol. 2020;395:125916. doi: 10.1016/j.surfcoat.2020.125916.
  • Mathabatha MH, Popoola API, Oladijo OP. Residual stresses and corrosion performance of plasma sprayed zinc-based alloy coating on mild steel substrate. Surf Coat Technol. 2017;318:293–298. doi: 10.1016/j.surfcoat.2016.10.023.
  • Pengfei L, Yadong G, Xuelong W, et al. Surface residual stresses in additive/subtractive manufacturing and electrochemical corrosion. Int J Adv Manuf Technol. 2018;98:687–697.
  • Wang H-Y, Zhu R-F, Lu Y-P, et al. Structures and properties of layered bioceramic coatings on pure titanium using a hybrid technique of sandblasting and micro-arc oxidation. Appl Surf Sci. 2013;282:271–280. doi: 10.1016/j.apsusc.2013.05.119.
  • Dou J, Gu G, Chen C. Effects of calcium salts on microstructure and corrosion behavior of micro-arc oxidation coatings on Mg-2Zn-1Ca-0.8 Mn alloy. Mater Lett. 2017;196:42–45. doi: 10.1016/j.matlet.2017.03.028.
  • Zhang X, Xiao G-Y, Jiang C-C, et al. Influence of process parameters on microstructure and corrosion properties of Hopeite coating on stainless steel. Corros Sci. 2015;94:428–437. doi: 10.1016/j.corsci.2015.02.021.
  • Zuo K, Wang L, Wang Z, et al. Interfaces. Zinc-doping induces evolution of biocompatible strontium-calcium-phosphate conversion coating on titanium to improve antibacterial property. ACS Appl Mater Interfaces. 2022;14(6):7690–7705. doi: 10.1021/acsami.1c23631.
  • Fattah-Alhosseini A, Keshavarz MK, Molaei M, et al. Plasma electrolytic oxidation (PEO) process on commercially pure Ti surface: effects of electrolyte on the microstructure and corrosion behavior of coatings. Metall Mater Trans A. 2018;49(10):4966–4979. doi: 10.1007/s11661-018-4824-8.
  • Du C-M, Zuo K-Q, Wang X-Y, et al. Effect of reaction time on the microstructure and properties of in-situ Hopeite chemical conversion coatings formed by self-corrosion on zinc alloy. J Mater Res Technol. 2022;18:4445–4455. doi: 10.1016/j.jmrt.2022.04.136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.