58
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Study on the mechanism and correlation of double-pit pitting in ductile iron IN625 laser cladding layer

, ORCID Icon, , &
Pages 2584-2620 | Received 11 Jul 2023, Accepted 19 Jan 2024, Published online: 07 Feb 2024

References

  • İz S, Köylüoğlu ÖS. Investigation of the economic and sustainability aspects of cathodic protection method for corrosion prevention in marine structures. J Adhes Sci Technol. 2023;37(20):2861–2870. doi: 10.1080/01694243.2022.2132650.
  • Wang Z, Zhou ZY, Xu W, et al. Research status and development trends in the field of marine environment corrosion: a new perspective. Environ Sci Pollut Res Int. 2021;28(39):54403–54428. doi: 10.1007/s11356-021-15974-0.
  • Shen X, Su H, Wang J, et al. New approach towards the machining process after laser cladding. ArchivCivMechEng. 2021;21(1):1–17. doi: 10.1007/s43452-020-00153-8.
  • Marques ESV, Silva FJG, Paiva OC, et al. Improving the mechanical strength of ductile cast iron welded joints using different heat treatments. Materials. 2019;12(14):2263. doi: 10.3390/ma12142263.
  • Han T, Zhou K, Chen Z, et al. Research progress on laser cladding alloying and composite processing of steel materials. Metals. 2022;12(12):2055. doi: 10.3390/met12122055.
  • Li C, Jia T, Han X, et al. Study on parameter optimization of laser cladding Fe60 based on GA-BP neural network. J Adhes Sci Technol. 2023;37(18):2556–2586. doi: 10.1080/01694243.2022.2159298.
  • Qi K, Yang Y, Hu G, et al. Thermal expansion control of composite coatings on 42CrMo by laser cladding. Surf Coat Technol. 2020;397:125983. doi: 10.1016/j.surfcoat.2020.125983.
  • Ma P, Wu Y, Zhang P, et al. Solidification prediction of laser cladding 316L by the finite element simulation. Int J Adv Manuf Technol. 2019;103(1–4):957–969. doi: 10.1007/s00170-019-03566-9.
  • Zhou Z, Du Y, He G, et al. Optimization and characterization of laser cladding of 15-5PH coating on 20Cr13 stainless steel. J Mater Eng Perform. 2023;32(3):962–977. doi: 10.1007/s11665-022-07157-w.
  • Wan MQ, Shi J, Lei L, et al. A comparative study of the microstructure, mechanical properties and corrosion resistance of Ni- or Fe- based composite coatings by laser cladding. J Mater Eng Perform. 2018;27(6):2844–2854. doi: 10.1007/s11665-018-3282-1.
  • Liu J, Zhang J, Deng L, et al. Microstructure and corrosion behaviour of laser-cladded γ-Ni/Mo2Ni3Si alloy coating. Surf Eng. 2019;35(1):59–65. doi: 10.1080/02670844.2018.1460091.
  • Fesharaki MN, Shoja-Razavi R, Mansouri HA, et al. Evaluation of the hot corrosion behavior of inconel 625 coatings on the inconel 738 substrate by laser and TIG cladding techniques. Optic Laser Technol. 2019;111:744–753. doi: 10.1016/j.optlastec.2018.09.011.
  • Zhang P, Liu Z, Su G, et al. A study on corrosion behaviors of laser cladded Fe-Cr-Ni coating in as-cladded and machined conditions. Mater Corrosion. 2019;70(4):711–719. doi: 10.1002/maco.201810457.
  • Fu F, Cheng H, Feng J, et al. Influence of laser scanning speed on corrosion resistance and hardness properties of Fe-Mn-Si-Cr-Ni-Co alloy coating. Integr Ferroelectr. 2019;198(1):109–115. doi: 10.1080/10584587.2019.1592583.
  • Zhou L, Liu Y, Li Z, et al. Microstructure and properties of Fe-Cr-Ni alloy coatings on T10 steel by laser cladding. Mater Res Express. 2019;7(1):016513. doi: 10.1088/2053-1591/ab5cac.
  • Liu H, Tan CKI, Wei Y, et al. Laser-cladding and interface evolutions of inconel 625 alloy on low alloy steel substrate upon heat and chemical treatments. Surf Coat Technol. 2020;404:126607. doi: 10.1016/j.surfcoat.2020.126607.
  • Wang R, Ouyang C, Li Q, et al. Study of the microstructure and corrosion properties of a Ni-based alloy coating deposited onto the surface of ductile cast iron using high-speed laser cladding. Materials. 2022;15(5):1643. doi: 10.3390/ma15051643.
  • Chen L, Zhang X, Wu Y, et al. Effect of surface morphology and microstructure on the hot corrosion behavior of TiC/IN625 coatings prepared by extreme high-speed laser cladding. Corros Sci. 2022;201:110271. doi: 10.1016/j.corsci.2022.110271.
  • Pratesa Y, Rizkia V, Rahwinarni N, et al. Comparison of 3%-Cr steel and carbon steel corrosion behavior as well tubing materials in CO2–H2S environment. J Adhes Sci Technol. 2023;37(20):2871–2884. doi: 10.1080/01694243.2022.2148332.
  • Han X, Li C, Zhang D, et al. Numerical simulation and experiment of quenching process of 35CrMnSi by disk laser. J Laser Applic. 2021;33(2):022004. doi: 10.2351/7.0000227.
  • Chang F, Ren K, Li S, et al. A voltammetric sensor for bisphenol a using gold nanochains and carbon nanotubes. Ecotoxicol Environ Saf. 2023;252:114588. doi: 10.1016/j.ecoenv.2023.114588.
  • Lu J, Liu H, Tang H, et al. Microstructure and mechanical properties of laser high-velocity impact welded ta/Cu joints. J Adhes Sci Technol. 2020;34(21):2333–2351. doi: 10.1080/01694243.2020.1757584.
  • Cao Y, Farouk N, Taheri M, et al. Evolution of solidification and microstructure in laser-clad IN625 superalloy powder on GTD-111 superalloy. Surf Coat Technol. 2021;412:127010. doi: 10.1016/j.surfcoat.2021.127010.
  • Zhao J, Taheri M, Shirvani K, et al. Improving the microstructure and wear behavior of gas turbine compressor parts through the application of FeCoNiCuAl–WC high entropy composite coating by laser cladding. Met Mater Int. 2023;30:1–11. doi: 10.1007/s12540-023-01537-0.
  • Taheri M, Rasoulpouraghdam A, Lohrasbi-Nejad A, et al. Influence of heat treatment on creep behavior of IN625 coating on a Ni3Al-base superalloy. Mater Res Express. 2021;8(5):056503. doi: 10.1088/2053-1591/abfba4.
  • Nakagawa T, Matsushima H, Ueda M, et al. Corrosion behavior of SUS 304L steel in pH 13 NaOH solution. Electrochemistry. 2020;88(5):468–474. doi: 10.5796/electrochemistry.20-00077.
  • Lu YX, Li X, Jing HY, et al. Finite element simulation of carbon steel welded joint corrosion. Transact Chin Weld Inst. 2018;9:10–14.
  • Ding QM, Qin YX, Cui YY. Galvanic corrosion of aircraft components in atmospheric environment. J Chin Soc Corrosion Protec. 2020;40(5):455–462.
  • Ding QM, Qin YX, Cui YY. Investigation of corrosion behavior of 3Cr steel in 3.5% NaCl solution based on COMSOL multiphysics simulation research. Mater Protect. 2020;53:37–41.
  • Zhang MF. Pitting corrosion and its numerical simulation based on peridynamics[D]. Xi An Shi, China: Northwestern Polytechnical University; 2017.
  • Liu R, Wheeler MF, Yotov I. On the spatial formulation of discontinuous Galerkin methods for finite elastoplasticity. Comput Method Appl Mech Eng. 2013;253:219–236. doi: 10.1016/j.cma.2012.07.015.
  • Zhang L, Xu W, Long J, et al. Surface roughening analysis of cold drawn tube based on macro–micro coupling finite element method. J Mater Process Technol. 2015;224:189–199. doi: 10.1016/j.jmatprotec.2015.05.009.
  • Li X, Wagner JN, Stark A, et al. Carbon redistribution process in austempered ductile iron (ADI) during heat treatment—APT and synchrotron diffraction study. Metals. 2019;9(7):789. doi: 10.3390/met9070789.
  • Yao M, Kong F, Tong W. A 3D finite element analysis of thermally induced residual stress distribution in stainless steel coatings on a mild steel by laser hot wire cladding. Int J Adv Manuf Technol. 2023;126(1–2):759–776. doi: 10.1007/s00170-023-11155-0.
  • He F, Zhou H, Li K, et al. Numerical analysis and experimental verification of melt Pool evolution during laser cladding of 40CrNi2Si2MoVA steel. J Therm Spray Tech. 2023;32(5):1416–1432. doi: 10.1007/s11666-023-01544-y.
  • Dong B, Peng G, Wu Z, et al. A CALPHAD-MD coupled method to reveal the strengthening mechanism in precipitation-strengthening Cu-Ni-Al alloy with evolving microstructures. Int J Plast. 2023;162:103540. doi: 10.1016/j.ijplas.2023.103540.
  • Situmorang RS, Seri O, Kawai H. Estimation of exchange current density for hydrogen evolution reaction of copper electrode by using the differentiating polarization method. Appl Surf Sci. 2020;505:144300. doi: 10.1016/j.apsusc.2019.144300.
  • Marshall RS, Katona RM, Melia MA, et al. Pit stability predictions of additively manufactured SS316 surfaces using finite element analysis. J Electrochem Soc. 2022;169(2):021506. doi: 10.1149/1945-7111/ac519d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.