77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mechanical, metallurgical, and corrosion investigations on wire arc additively manufactured low carbon steel

ORCID Icon &
Received 06 Oct 2023, Accepted 01 Mar 2024, Published online: 21 Mar 2024

References

  • Heilig ML. United States Patent Office. SIGGRAPH Comput Graph. 1994;28(2):131–134. doi:10.1145/178951.178972.
  • Dinovitzer M, Chen X, Laliberte J, et al. Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Addit Manuf. 2019;26:138–146. doi:10.1016/j.addma.2018.12.013.
  • Cunningham CR, Flynn JM, Shokrani A, et al. Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf. 2018;22:672–686. doi:10.1016/j.addma.2018.06.020.
  • Badoniya P, Srivastava M, Jain PK, et al. Parametric investigation on wire arc additive manufacturing of ER70S-6 low-carbon steel for fabrication of thick-walled parts. J Adhes Sci Technol. 2023:1–28. doi:10.1080/01694243.2023.2275823.
  • Yadav A, Srivastava M, Jain PK, et al. Investigation of bead morphology and mechanical behaviour for metal inert gas welding-based WAAM in pulsed mode metal transfer on 316LSi stainless steel. J Adhes Sci Technol. 2023;38(5):738–769. doi:10.1080/01694243.2023.2241642.
  • Vishwanatha HM, Rao RN, Maiya M, et al. Effects of arc current and travel speed on the processing of stainless steel via wire arc additive manufacturing (WAAM) process. J Adhes Sci Technol. 2023:1–18. doi:10.1080/01694243.2023.2289770.
  • Filomeno M, Williams S. Wire + arc additive manufacturing vs. traditional machining from solid: a cost comparison; 2015 [cited 2019 Oct 1]. Available from: http://waammat.com/documents/waam-vs-machining-from-solid-a-cost-comparison
  • Rafieazad M, Ghaffari M, Vahedi Nemani A, et al. Microstructural evolution and mechanical properties of a low-carbon low-alloy steel produced by wire arc additive manufacturing. Int J Adv Manuf Technol. 2019;105(5–6):2121–2134. doi:10.1007/s00170-019-04393-8.
  • Liberini M, Astarita A, Campatelli G, et al. Selection of optimal process parameters for wire arc additive manufacturing. Procedia CIRP. 2017;62:470–474. doi:10.1016/j.procir.2016.06.124.
  • Le VT, Mai DS, Hoang QH. A study on wire and arc additive manufacturing of low-carbon steel components: process stability, microstructural and mechanical properties. J Braz Soc Mech Sci Eng. 2020;42(9):1–11. doi:10.1007/s40430-020-02567-0.
  • Aldalur E, Veiga F, Suárez A, et al. High deposition wire arc additive manufacturing of mild steel: Strategies and heat input effect on microstructure and mechanical properties. J Manuf Process. 2020;58:615–626. doi:10.1016/j.jmapro.2020.08.060.
  • Aldalur E, Veiga F, Suárez A, et al. Analysis of the wall geometry with different strategies for high deposition wire arc additive manufacturing of mild steel. Metals. 2020;10(7):892. doi:10.3390/met10070892.
  • Henckell P, Gierth M, Ali Y, et al. Reduction of energy input in wire arc additive manufacturing (WAAM) with gas metal arc welding (GMAW). Materials. 2020;13(11):2491. doi:10.3390/ma13112491.
  • Jafari D, Vaneker THJ, Gibson I. Wire and arc additive manufacturing: opportunities and challenges to control the quality and accuracy of manufactured parts. Mater Des. 2021;202:109471. doi:10.1016/j.matdes.2021.109471.
  • Caballero A, Ding J, Ganguly S, et al. Wire + arc additive manufacture of 17-4 PH stainless steel: effect of different processing conditions on microstructure, hardness, and tensile strength. J Mater Process Technol. 2019;268:54–62. doi:10.1016/j.jmatprotec.2019.01.007.
  • Nemani AV, Ghaffari M, Nasiri A. On the post-printing heat treatment of a wire arc additively manufactured Er70s part. Materials. 2020;13(12):1–13. doi:10.3390/ma13122795.
  • Xu X, Ding J, Ganguly S, et al. Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire + arc additive manufacture process. J Mater Process Tech. 2019;265:201–209. doi:10.1016/j.jmatprotec.2018.10.023.
  • Pattanayak S, Sahoo SK. Gas metal arc welding based additive manufacturing—a review. CIRP J Manuf Sci Technol. 2021;33:398–442. doi:10.1016/j.cirpj.2021.04.010.
  • Hamid KL, Moustafa NM, Noori AF. Heat treatment effect on carbon steel corrosion resistance at different carbon content. J Mech Eng Res Dev. 2020;43:231–237.
  • Du CW, Li XG, Liang P, et al. Effects of microstructure on corrosion of X70 pipe steel in an alkaline soil. J Mater Eng Perform. 2009;18:216–220. doi:10.1007/s11665-008-9280-y.
  • Qi G, Qin X, Xie J, et al. Electrochemical corrosion behaviour of four low. RSC Adv. 2022;12(32):20929–20945. doi:10.1039/d2ra03200g.
  • Ron T, Levy GK, Dolev O, et al. Environmental behavior of low carbon steel produced by a wire arc additive manufacturing process. Metals. 2019;9(8):888. doi:10.3390/met9080888.
  • Handoko W, Pahlevani F, Sahajwalla V. Enhancing corrosion resistance and hardness properties of carbon steel through modification of microstructure. Materials. 2018;11(12):2404. doi:10.3390/ma11122404.
  • Metal global market report 2023; 2023.
  • Snehal M, Yerukola P. Carbon steel market; 2023.
  • Purwaningrum Y, Triyono, Wirawan Pu M, et al. Effect of shielding gas mixture on gas metal arc welding (GMAW) of low carbon steel (LR grade A). Key Eng Mater. 2016;705:250–254. doi:10.4028/www.scientific.net/KEM.705.250.
  • Lehmann T, Jain A, Jain Y, et al. Concurrent geometry- and material-based process identification and optimization for robotic CMT-based wire arc additive manufacturing. Mater Des. 2020;194:108841. doi:10.1016/j.matdes.2020.108841.
  • Vahedi Nemani A, Ghaffari M, Nasiri A. Comparison of microstructural characteristics and mechanical properties of shipbuilding steel plates fabricated by conventional rolling versus wire arc additive manufacturing. Addit Manuf. 2020;32:101086. doi:10.1016/j.addma.2020.101086.
  • Pattanayak S, Sahoo SK. Effect of travel speed and number of layers on surface waviness of ER70S6 deposits fabricated through Non-Transferred wire arc additive manufacturing. J Adhes Sci Technol. 2023;37(24):3622–3651. doi:10.1080/01694243.2023.2217541.
  • Sherif ESM, Erasmus RM, Comins JD. In situ Raman spectroscopy and electrochemical techniques for studying corrosion and corrosion inhibition of iron in sodium chloride solutions. Electrochim Acta. 2010;55(11):3657–3663. doi:10.1016/j.electacta.2010.01.117.
  • Salahi S, Vahedi A, Ghaffari M, et al. On microstructure, crystallographic orientation, and corrosion properties of wire arc additive manufactured 420 martensitic stainless steel: effect of the inter-layer temperature. Addit Manuf. 2021;46:1–18. doi:10.1016/j.addma.2021.102157.
  • Calderon JP, Diaz MC, Grau LMR, et al. Effect of the diesel, inhibitor, and CO2 additions on the corrosion performance of 1018 carbon steel in 3% NaCl solution. J Chem. 2014;2014:1–10. doi:10.1155/2014/940579.
  • Casales M, Regla I. Effect of organic corrosion inhibitors on the corrosion performance of 1018 carbon steel in 3% NaCl solution. Int J Electrochem Sci. 2013;8:2491–2503.
  • Katiyar PK, Misra S, Mondal K. Corrosion behavior of annealed steels with different in freely aerated 3.5% NaCl solution. J Mater Eng Perform. 2019;28(7):4041–4052. doi:10.1007/s11665-019-04137-5.
  • Moon AP, Sekhar KC, Mahanty S, et al. Corrosion behavior of newly developed high-strength bainitic railway wheel steels. J Mater Eng Perform. 2020;29(5):3443–3459. doi:10.1007/s11665-020-04846-2.
  • Neetu, Katiyar PK, Sangal S, et al. Effect of various phase fraction of bainite, intercritical ferrite, retained austenite and pearlite on the corrosion behavior of multiphase steels. Corros Sci. 2021;178:109043. doi:10.1016/j.corsci.2020.109043.
  • Cui Y, Liu S, Smith K, et al. Characterization of corrosion scale formed on stainless steel delivery pipe for reclaimed water treatment. Water Res. 2016;88:816–825. doi:10.1016/j.watres.2015.11.021.
  • Smith K, Cui Y, Liu S, et al. Characterization of corrosion scale formed on stainless steel delivery pipe for reclaimed water treatment characterization of corrosion scale formed on stainless steel delivery pipe for reclaimed water treatment. Water Res. 2015;88:816–825. doi:10.1016/j.watres.2015.11.021.
  • Sani FM. An electrochemical study of the effect of high salt concentration on uniform corrosion of carbon steel in aqueous CO2 solutions an electrochemical study of the effect of high salt concentration on uniform corrosion of carbon steel in aqueous CO2 solution. J Electrochem Soc. 2021;168:1–10. doi:10.1149/1945-7111/abf5f9.
  • Sun R, Yu Q, Zhang Y, et al. Effect of Si content on the corrosion behavior of 420 MPa weathering steel. Metals. 2019;9(5):486. doi:10.3390/met9050486.
  • Liu F. Effects of nickel and silicon content on the corrosion inhibition of weathering steels in simulated coastal environments. Int J Electrochem Sci. 2021;16(1):151017. doi:10.20964/2021.01.69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.