51
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization of the damage mechanism in CFRP composites under mode I based on comprehensive analysis of AE signals

, , , &
Received 13 Dec 2023, Accepted 12 Apr 2024, Published online: 22 Apr 2024

References

  • Yao L, Liu J, Lyu Z, et al. In-situ damage mechanism investigation and a prediction model for delamination with fibre bridging in composites. Eng Fract Mech. 2023;281:109079. doi: 10.1016/j.engfracmech.2023.109079.
  • Hlača I, Škec L, Ribarić D, et al. Investigation of the influence of the loading arrangement on the measured mode-I fracture resistance. J Adhes Sci Technol. 2024;38(3):397–424. doi: 10.1080/01694243.2023.2230654.
  • Škec L, Alfano G. Experimental and numerical study of rate-dependent mode-I failure of a structural adhesive. J Adhes Sci Technol. 2023;99(8):1323–1355. doi: 10.1080/00218464.2022.2106132.
  • Schweizer M, Meinhard D, Ruck S, et al. Adhesive bonding of CFRP: a comparison of different surface pre-treatment strategies and their effect on the bonding shear strength. J Adhes Sci Technol. 2017;31(23):2581–2591. doi: 10.1080/01694243.2017.1310695.
  • Chen Y, Zhou HS, Wu XQ. Influence of co-deposition modification on mode I and II interlaminar toughness of epoxy laminates interleaved with waste textiles using experimental measurement and finite element technique. Theor Appl Fract Mech. 2024;130:104267. doi: 10.1016/j.tafmec.2024.104267.
  • Brewer JC, Lagace PA. Quadratic stress criterion for initiation of delamination. J Compos Mater. 1988;22(12):1141–1155. doi: 10.1177/002199838802201205.
  • Barile C, Casavola C, Pappalettera G, et al. Application of different acoustic emission descriptors in damage assessment of fiber reinforced plastics: a comprehensive review. Eng Fract Mech. 2020;235:107083. doi: 10.1016/j.engfracmech.2020.107083.
  • Liu S, Qiao S, Xu L, et al. Acoustic emission monitoring and damage evaluation of bi-adhesive joint patch-repaired composites. J Adhes Sci Technol. 2023;37(17):2461–2483. doi: 10.1080/01694243.2022.2141500.
  • Fotouhi M, Najafabadi MA. Acoustic emission-based study to characterize the initiation of delamination in composite materials. J Thermoplast Compos Mater. 2016;29(4):519–537. doi: 10.1177/0892705713519811.
  • Huang C, Ju S, He M, et al. Identification of failure modes of composite thin-ply laminates containing circular hole under tension by acoustic emission signals. Compos Struct. 2018;206:70–79. doi: 10.1016/j.compstruct.2018.08.019.
  • Sayar H, Azadi M, Ghasemi-Ghalebahman A, et al. Clustering effect on damage mechanisms in open-hole laminated carbon/epoxy composite under constant tensile loading rate, using acoustic emission. Compos Struct. 2018;204:1–11. doi: 10.1016/j.compstruct.2018.07.047.
  • WenQin H, Ying L, AiJun G, et al. Damage modes recognition and Hilbert-Huang transform analyses of CFRP laminates utilizing acoustic emission technique. Appl Compos Mater. 2016;23(2):155–178. doi: 10.1007/s10443-015-9454-3.
  • Özaslan E, Yetgin A, Acar B, et al. Damage mode identification of open hole composite laminates based on acoustic emission and digital image correlation methods. Compos Struct. 2021;274:114299. doi: 10.1016/j.compstruct.2021.114299.
  • Cheng X, Ying J, Wu Z, et al. Mode I interlaminar fracture characteristics of CNTs doped woven and unidirectional CFRP via acoustic emission. Theor Appl Fract Mech. 2023;124:103812. doi: 10.1016/j.tafmec.2023.103812.
  • Andraju LB, Raju G. Damage characterization of CFRP laminates using acoustic emission and digital image correlation: clustering, damage identification and classification. Eng Fract Mech. 2023;277:108993. doi: 10.1016/j.engfracmech.2022.108993.
  • Akgun S, Senol CO, Kilic G, et al. A novel damage evaluation of CFRPs under mode-I loading by using multi-instrument structural health monitoring methods. Eng Fract Mech. 2023;286:109291. doi: 10.1016/j.engfracmech.2023.109291.
  • Bohmann T, Schlamp M, Ehrlich I. Acoustic emission of material damages in glass fibre-reinforced plastics. Compos B Eng. 2018;155:444–451. doi: 10.1016/j.compositesb.2018.09.018.
  • Barile C, Casavola C, Pappalettera G. Acoustic emission waveform analysis in CFRP under mode I test. Eng Fract Mech. 2019;210:408–413. doi: 10.1016/j.engfracmech.2018.01.023.
  • Barile C, Casavola C, Pappalettera G, et al. Damage characterization in composite materials using acoustic emission signal-based and parameter-based data. Compos B Eng. 2019;178:107469. doi: 10.1016/j.compositesb.2019.107469.
  • Mohammadi R, Saeedifar M, Toudeshky HH, et al. Prediction of delamination growth in carbon/epoxy composites using a novel acoustic emission-based approach. J Reinf Plast Compos. 2015;34(11):868–878. doi: 10.1177/0731684415583166.
  • Saeedifar M, Fotouhi M, Najafabadi MA, et al. Prediction of quasi-static delamination onset and growth in laminated composites by acoustic emission. Compos B Eng. 2016;85:113–122. doi: 10.1016/j.compositesb.2015.09.037.
  • Manterola J, Aguirre M, Zurbitu J, et al. Using acoustic emissions (AE) to monitor mode I crack growth in bonded joints. Eng Fract Mech. 2020;224:106778. doi: 10.1016/j.engfracmech.2019.106778.
  • Nikbakht M, Yousefi J, Hosseini-Toudeshky H, et al. Delamination evaluation of composite laminates with different interface fiber orientations using acoustic emission features and micro visualization. Compos B Eng. 2017;113:185–196. doi: 10.1016/j.compositesb.2016.11.047.
  • Oskouei AR, Zucchelli A, Ahmadi M, et al. An integrated approach based on acoustic emission and mechanical information to evaluate the delamination fracture toughness at mode I in composite laminate. Mater Des. 2011;32(3):1444–1455. doi: 10.1016/j.matdes.2010.08.048.
  • Yousefi J, Mohamadi R, Saeedifar M, et al. Delamination characterization in composite laminates using acoustic emission features, micro visualization and finite element modeling. J Compos Mater. 2016;50(22):3133–3145. doi: 10.1177/0021998315615691.
  • Fotouhi M, Ahmadi Najafabadi M. Investigation of the mixed-mode delamination in polymer-matrix composites using acoustic emission technique. J Reinf Plast Compos. 2014;33(19):1767–1782. doi: 10.1177/0731684414544391.
  • Chabchoub M, Bouscarrat D, Vieille B, et al. Investigations on the mode I translaminar failure and determination of fracture toughness in woven-ply carbon fibers thermoplastic composites at high temperatures. Appl Acoust. 2017;128:55–63. doi: 10.1016/j.apacoust.2017.01.028.
  • Daneshjoo Z, Shokrieh MM, Fakoor M, et al. Physics of delamination onset in unidirectional composite laminates under mixed-mode I/II loading. Eng Fract Mech. 2019;211:82–98. doi: 10.1016/j.engfracmech.2019.02.013.
  • Lissek F, Haeger A, Knoblauch V, et al. Acoustic emission for interlaminar toughness testing of CFRP: evaluation of the crack growth due to burst analysis. Compos B Eng. 2018;136:55–62. doi: 10.1016/j.compositesb.2017.10.012.
  • Saeedifar M, Fotouhi M, Najafabadi MA, et al. Prediction of delamination growth in laminated composites using acoustic emission and cohesive zone modeling techniques. Compos Struct. 2015;124:120–127. doi: 10.1016/j.compstruct.2015.01.003.
  • Davijani AAB, Hajikhani M, Ahmadi M. Acoustic emission based on sentry function to monitor the initiation of delamination in composite materials. Mater Des. 2011;32(5):3059–3065. doi: 10.1016/j.matdes.2011.01.010.
  • Saeedifar M, Fotouhi M, Najafabadi MA, et al. Interlaminar fracture toughness evaluation in glass/epoxy composites using acoustic emission and finite element methods. J Mater Eng Perform. 2015;24(1):373–384. doi: 10.1007/s11665-014-1291-2.
  • Mohammadi R, Najafabadi MA, Saghafi H, et al. A quantitative assessment of the damage mechanisms of CFRP laminates interleaved by PA66 electrospun nanofibers using acoustic emission. Compos Struct. 2021;258:113395. doi: 10.1016/j.compstruct.2020.113395.
  • Ni QQ, Iwamoto M. Wavelet transform of acoustic emission signals in failure of model composites. Eng Fract Mech. 2002;69(6):717–728. doi: 10.1016/S0013-7944(01)00105-9.
  • De Moura M, Morais JJL, Dourado N. A new data reduction scheme for mode I wood fracture characterization using the double cantilever beam test. Eng Fract Mech. 2008;75(13):3852–3865. doi: 10.1016/j.engfracmech.2008.02.006.
  • De Moura M, Campilho R, Goncalves J. Crack equivalent concept applied to the fracture characterization of bonded joints under pure mode I loading. Compos Sci Technol. 2008;68(10–11):2224–2230. doi: 10.1016/j.compscitech.2008.04.003.
  • Hashemi S, Kinloch AJ, Williams JM. The analysis of interlaminar fracture in uniaxial fibre-polymer composites. Proc Royal Soc. 1990;427(1872):173–199.
  • Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Trans Signal Process. 2014;62(3):531–544. doi: 10.1109/TSP.2013.2288675.
  • ASTM D5528-01. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. West Conshohocken (PA): ASTM International; 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.