37
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimation of fracture behavior of CFRP/CFRP adhesively bonded joints under mixed-mode conditions using a cohesive zone model

, , , &
Received 21 Nov 2023, Accepted 14 Apr 2024, Published online: 21 May 2024

References

  • Sun C, Thouless MD, Waas AM, et al. Rate effects for mixed-mode fracture of plastically deforming, adhesively-bonded structures. Int J Adhes Adhes. 2009;29(4):434–443. doi: 10.1016/j.ijadhadh.2008.09.003.
  • Anyfantis KN, Tsouvalis NG. A novel traction-separation law for the prediction of the mixed mode response of ductile adhesive joints. Int J Solids Struct. 2012;49(1):213–226. doi: 10.1016/j.ijsolstr.2011.10.001.
  • Campilho RDSG, Banea MD, Neto JABP, et al. Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. Int J Adhes Adhes. 2013;44:48–56. doi: 10.1016/j.ijadhadh.2013.02.006.
  • Avendaño R, Carbas RJC, Marques EAS, et al. Effect of temperature and strain rate on single lap joints with dissimilar lightweight adherends bonded with an acrylic adhesive. Comp Struct. 2016;152:34–44. doi: 10.1016/j.compstruct.2016.05.034.
  • Neumayer J, Koerber H, Hinterhölzl R. An explicit cohesive element combining cohesive failure of the adhesive and delamination failure in composite bonded joints. Comp Struct. 2016;146:75–83. doi: 10.1016/j.compstruct.2016.03.009.
  • Carvalho UTF, Campilho RDSG. Validation of pure tensile and shear cohesive laws obtained by the direct method with single-lap joints. Int J Adhes Adhes. 2017;77:41–50. doi: 10.1016/j.ijadhadh.2017.04.002.
  • Kim MH, Hong HS. An adaptation of mixed-mode I + II continuum damage model for prediction of fracture characteristics in adhesively bonded joint. Int J Adhes Adhes. 2018;80:87–103. doi: 10.1016/j.ijadhadh.2017.10.008.
  • Sadeghi MZ, Gabener A, Zimmermann J, et al. Failure load prediction of adhesively bonded single lap joints by using various FEM techniques. Int J Adhes Adhes. 2020;97:102493. doi: 10.1016/j.ijadhadh.2019.102493.
  • Watson B, Nandwani Y, Worswick MJ, et al. Metallic multi-material adhesive joint testing and modeling for vehicle lightweighting. Int J Adhes Adhes. 2019;95:102421. doi: 10.1016/j.ijadhadh.2019.102421.
  • Sadeghi A, Mahshid R, Heidari-Rarani M, et al. Effect of lamina fiber orientation interfaced with semi-flexible adhesive layer on strength and failure mode of composite single-lap joints. Int J Adhes Adhes. 2022;118:103232. doi: 10.1016/j.ijadhadh.2022.103232.
  • Ibrahim AH, Watson B, Jahed h, et al. Prediction of bonded asymmetric metallic cross-tension and single lap shear joints using finite element model with material-level adhesive properties and cohesive zone method. Int J Adhes Adhes. 2023;120:103298. doi: 10.1016/j.ijadhadh.2022.103298.
  • Shang X, Marques EAS, Carbas RJC, et al. Fracture mechanism of adhesive single-lap joints with composite adherends under quasi-static tension. Comp Struct. 2020;251:112639. doi: 10.1016/j.compstruct.2020.112639.
  • Kaiser I, Tan KT. Damage and strength analysis of carbon fiber reinforced polymer and titanium tubular-lap joint using hybrid adhesive design. Int J Adhes Adhes. 2022;103:102710. doi: 10.1016/j.ijadhadh.2020.102710.
  • Pinto AMG, Magalhães AG, Campilho RDSG, et al. Single-lap joints of similar and dissimilar adherends bonded with an acrylic adhesive. J Adhes. 2009;85(6):351–376. doi: 10.1080/00218460902880313.
  • Hou Y, Wang W, Meng L, et al. An insight into the mechanical behavior of adhesively bonded plain-woven-composite joints using multiscale modeling. Int J Mech Sci. 2022;219:107063. doi: 10.1016/j.ijmecsci.2022.107063.
  • Kaiser I, Zhang T, Tan KT. Mechanical behavior and failure mechanisms of CFRP and titanium tubular adhesive lap joints at extreme temperatures. Comp Struct. 2022;290:115528. doi: 10.1016/j.compstruct.2022.115528.
  • Dadian A, Rahnama S. Experimental and numerical study of optimum numerical functional graded aluminum/GFRP adhesive lap shear joints using epoxy/CTBN. Int J Adhes Adhes. 2021;107:102854. doi: 10.1016/j.ijadhadh.2021.102854.
  • Alves DL, Campilho RDSG, Moreira RDF, et al. Experimental and numerical analysis hybrid adhesively-bonded scarf joints. Int J Adhes Adhes. 2018;83:87–95. doi: 10.1016/j.ijadhadh.2018.05.011.
  • Watson B, Worswick MJ, Cronin DS. Quantification of mixed mode loading and bond line thickness on adhesive joint strength using novel test specimen geometry. Int J Adhes Adhes. 2020;102:102682. doi: 10.1016/j.ijadhadh.2020.102682.
  • Liu PF, Liu JW. Finite element analysis of competitive damage mechanisms of composite scarf adhesive joints by considering thickness effect. Theor App Frac Mech. 2022;119:103347. doi: 10.1016/j.tafmec.2022.103347.
  • Barzegar M, Moallem MD, Mokhtari M. Progressive damage analysis of an adhesively bonded composite T-joint under bending, considering micro-scale effects of fiber volume fraction of adherends. Comp Struc. 2021;258:113374. doi: 10.1016/j.compstruct.2020.113374.
  • Carneiro MAS, Campilho RDSG. Analysis of adhesively bonded T-joints by experimental and cohesive zone models. J Adhes Sci Tech. 2017;31(18):1998–2014. doi: 10.1080/01694243.2017.1291320.
  • Campilho RDSG, de Moura MFSF, Domingues JJMS. Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs. Int J Solids Struc. 2008;45(5):1497–1512. doi: 10.1016/j.ijsolstr.2007.10.003.
  • de Moura MFSF. Application of cohesive zone modeling to composite bonded repair. J Adhes. 2015;91(1–2):71–94. doi: 10.1080/00218464.2014.901912.
  • Chaves FJP, de Moura MFSF, da Silva LFM, et al. Numerical validation of a crack equivalent method for mixed-mode I + II fracture characterization of bonded joints. Eng Frac Mech. 2013;107:38–47. doi: 10.1016/j.engfracmech.2013.05.008.
  • Kouno Y, Imanaka M, Hino R, et al. R-curve behavior of adhesively bonded composite joints with highly toughened epoxy adhesive under mixed mode conditions. Int J Adhes Adhes. 2021;105:102762. doi: 10.1016/j.ijadhadh.2020.102762.
  • de Moura MFSF, Campilho RDSG, Gonçalves JPM. Pure mode II fracture characterization of composite bonded joint. Int. J. Solids. Struc. 2009;46(6):1589–1595. doi: 10.1016/j.ijsolstr.2008.12.001.
  • de Moura MFSF, Silva MAL, de Morais AB, et al. Equivalent crack based mode II fracture characterization of wood. Eng Frac Mech. 2006;73(8):978–993. doi: 10.1016/j.engfracmech.2006.01.004.
  • Moreira RDF, Oliveira V, Silva FGA, et al. Mode II fracture toughness of carbon-epoxy bonded joints with femtosecond laser treated surfaces. Int J Mech Sci. 2018;148:707–713. doi: 10.1016/j.ijmecsci.2018.09.029.
  • Wang Z, Xian G. Cohesive zone model prediction of debonding failure in CFRP-to-steel bonded interface with a ductile adhesive. Comp Sci Tech. 2022;230:109315. doi: 10.1016/j.compscitech.2022.109315.
  • Carvalho UTF, Campilho RDSG. Application of the direct method for cohesive law estimation applied to the strength prediction of double-lap joint. Theor Appl Frac Mech. 2016;85:140–148. doi: 10.1016/j.tafmec.2016.08.018.
  • Mottaghian F, Taheri F. Assessment of failure mechanism of double-strap 3D-FML adhesively bonded joints under tensile and compressive loadings using cohesive zone modelling approach. Comp Struc. 2023;318:117078. doi: 10.1016/j.compstruct.2023.117078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.