60
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of biodegradable bioadhesive nanocomposites reinforced with quantum dots and functionalized carbon nanotubes

, , , & ORCID Icon
Received 27 Dec 2023, Accepted 11 Jun 2024, Published online: 10 Jul 2024

References

  • Lipatova TE , Matyushova VG, Narazhaiko LF, Electrochemical polymerization of an unsaturated isocyanate-containing oligomer. Polymer Science USSR 1986, 28(8), 1867-1873.
  • Bahtiyar G, Ekrem M, Ünal B, et al. Mechanical properties and damage behaviours of polyurethane composites reinforced with BNNP and MWCNT hybrid nanoparticles. J Elastom Plast. 2023;55(4):613–625. doi: 10.1177/00952443231165427.
  • Yang H, Yu B, Song P, et al. Surface-coating engineering for flame retardant flexible polyurethane foams: a critical review. Compos B: Eng. 2019;176:107185. doi: 10.1016/j.compositesb.2019.107185.
  • Feldman D, Lacasse M. Mechanical characteristics of sealants based on polyurethane–lignin polyblends. J Adhes Sci Technol. 1994;8(9):957–969. doi: 10.1163/156856194X00843.
  • Mucci VL, Hormaiztegui ME, Amalvy JI, et al. Formulation, structure and properties of waterborne polyurethane coatings: a brief review. J Adhes Sci Technol. 2024;38(4):489–516. ()doi: 10.1080/01694243.2023.2240587.
  • Ferreira P, Silva AF, Pinto MI, et al. Development of a biodegradable bioadhesive containing urethane groups. J Mater Sci Mater Med. 2008;19(1):111–120. doi: 10.1007/s10856-007-3117-3.
  • Qiang T, Han M, Wang X. Waterborne polyurethane/carbon quantum dot nanocomposite as a surface coating material exhibiting outstanding luminescent performance. Prog Org Coat. 2020;138:105433. doi: 10.1016/j.porgcoat.2019.105433.
  • Kumar YR, Deshmukh K, Sadasivuni KK, et al. Graphene quantum dot-based materials for sensing, bio-imaging and energy storage applications: a review. RSC Adv. 2020;10(40):23861–23898. doi: 10.1039/d0ra03938a.
  • Du W, Xu X, Hao H, et al. Green synthesis of fluorescent carbon quantum dots and carbon spheres from pericarp. Sci China Chem. 2015;58(5):863–870. doi: 10.1007/s11426-014-5256-y.
  • Du F, Zhang M, Li X, et al. Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications. Nanotechnology. 2014;25(31):315702. doi: 10.1088/0957-4484/25/31/315702.
  • Gobi N, Vijayakumar D, Keles O, et al. Infusion of graphene quantum dots to create stronger, tougher, and brighter polymer composites. ACS Omega. 2017;2(8):4356–4362. doi: 10.1021/acsomega.6b00517.
  • Barrera-Rivera KA, Marcos-Fernández Á, Martínez-Richa A. Chemo-enzymatic syntheses of polyester-urethanes. In: Green polymer chemistry: biocatalysis and biomaterials. New York: American Chemical Society; 2010. p. 227–235.
  • Antolín-Cerón VH, Gómez-Salazar S, Rabelero M, et al. Comparative study of the thermal and mechanical properties of nanocomposites prepared by in situ polymerization of e-caprolactone and functionalized carbon nanotubes. Polym Compos. 2012;33(4):562–572. doi: 10.1002/pc.22175.
  • Antolín-Cerón VH, Altamirano-Gutiérrez A, Astudillo-Sánchez PD, et al. Development of novel nanocomposite polyurethane ultrafiltration membranes based on multiwalled carbon nanotubes functionalized with PAMAM dendrimer. Polym Plast Technol Mater. 2021;60(9):974–993. doi: 10.1080/25740881.2021.1871624.
  • Xiang Z, Jiang Y, Cui C, et al. Sensitive, selective and reliable detection of Fe3+ in lake water via carbon dots-based fluorescence assay. Molecules. 2022;27(19):6749. doi: 10.3390/molecules27196749.
  • Xiao Q, Liang Y, Zhu F, et al. Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. Microchim Acta. 2017;184(7):2429–2438. doi: 10.1007/s00604-017-2242-z.
  • Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13(8):1741–1747. doi: 10.1002/app.1969.070130815.
  • Żenkiewicz M. Methods for the calculation of surface free energy of solids. J Achieve Mater Manufact Eng. 2007;24(1):137–145.
  • Payne KJ, Veis A. Fourier transform IR spectroscopy of collagen and gelatin solutions: deconvolution of the amide I for conformational studies. Biopolymers. 1988;27(11):1749–1760. doi: 10.1002/bip.360271105.
  • de Campos Vidal B, Mello MLS. Collagen type I amide I band infrared spectroscopy. Micron. 2011;42(3):283–289. doi: 10.1016/j.micron.2010.09.010.
  • Gómez-de-Pedro S, Salinas-Castillo A, Ariza-Avidad M, et al. Microsystem assisted synthesis of carbon dots with fluorescent and colorimetric properties for pH detection. Nanoscale. 2014;6(11):6018–6024. doi: 10.1039/c4nr00573b.
  • Wei Y, Cheng F, Li H, et al. Synthesis and properties of polyurethane resins based on liquefied wood. J Appl Polym Sci. 2004;92(1):351–356. doi: 10.1002/app.20023.
  • Chen CJ, Tsai MH, Tseng IH, et al. Composition, thermal and tensile properties of polyurethane–urea–silica hybrids. RSC Adv. 2013;3(25):9729–9738. doi: 10.1039/c3ra23186k.
  • Ahmad M, Luo J, Xu B, et al. Synthesis and characterization of polyurethane-based shape-memory polymers for tailored Tg around body temperature for medical applications. Macro Chem Phys. 2011;212(6):592–602. doi: 10.1002/macp.201000540.
  • Pandya MV, Deshpande DD, Hundiwale DG. Effect of diisocyanate structure on viscoelastic, thermal, mechanical and electrical properties of cast polyurethanes. J Appl Polym Sci. 1986;32(5):4959–4969. doi: 10.1002/app.1986.070320518.
  • Ristić IS, Bjelović ZD, Holló B, et al. Thermal stability of polyurethane materials based on castor oil as polyol component. J Therm Anal Calorim. 2013;111(2):1083–1091. doi: 10.1007/s10973-012-2497-x.
  • Antolín-Cerón VH, Barrera-Rivera KA, Fuentes-García MA, et al. Preparation and characterization of nanocomposites made from chemoenzymatically prepared polyester urethanes and functionalized multiwalled carbon nanotubes. Polym Compos. 2018;39(S2):E697–E709. doi: 10.1002/pc.24133.
  • Song Y, Zhu S, Zhang S, et al. Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J Mater Chem C. 2015;3(23):5976–5984. doi: 10.1039/C5TC00813A.
  • Schneider J, Reckmeier CJ, Xiong Y, et al. Molecular fluorescence in citric acid-based carbon dots. J Phys Chem C. 2017;121(3):2014–2022. doi: 10.1021/acs.jpcc.6b12519.
  • M J, S S, M M, et al. Improved citric acid-derived carbon dots synthesis through microwave-based heating in a hydrothermal pressure vessel. RSC Adv. 2022;12(50):32401–32414. doi: 10.1039/d2ra06420k.
  • Liu R. Facile synthesis of magneto-fluorescent carbon dots by one-step microwave-assisted pyrolysis. J Alloys Compd. 2021;855:157456. doi: 10.1016/j.jallcom.2020.157456.
  • Tan J, Zou R, Zhang J, et al. Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix. Nanoscale. 2016;8(8):4742–4747. doi: 10.1039/c5nr08516k.
  • Pan B, Cui D, Ozkan CS, et al. Effects of carbon nanotubes on photoluminescence properties of quantum dots. J Phys Chem C. 2008;112(4):939–944. doi: 10.1021/jp068920c.
  • Kováčová M, Marković ZM, Humpolíček P, et al. Carbon quantum dots modified polyurethane nanocomposite as effective photocatalytic and antibacterial agents. ACS Biomater Sci Eng. 2018;4(12):3983–3993. doi: 10.1021/acsbiomaterials.8b00582.
  • Gogoi S, Kumar M, Mandal BB, et al. High performance luminescent thermosetting waterborne hyperbranched polyurethane/carbon quantum dot nanocomposite with in vitro cytocompatibility. Compos Sci Technol. 2015;118:39–46. doi: 10.1016/j.compscitech.2015.08.010.
  • Yao Y, Xu Z, Liu B, et al. Multiple H-bonding chain extender-based ultrastiff thermoplastic polyurethanes with autonomous self-healability, solvent-free adhesiveness, and AIE fluorescence. Adv Funct Mater. 2021;31(4):2006944. doi: 10.1002/adfm.202006944.
  • Banea MD, da Silva LF. Mechanical characterization of flexible adhesives. J Adhes. 2009;85(4–5):261–285. doi: 10.1080/00218460902881808.
  • Harris CG, Jursik NJ, Rochefort WE, et al. Additive manufacturing with soft TPU–adhesion strength in multimaterial flexible joints. Front Mech Eng. 2019;5:37. doi: 10.3389/fmech.2019.00037.
  • Tseng YM, Narayanan A, Mishra K, et al. Light-activated adhesion and debonding of underwater pressure-sensitive adhesives. ACS Appl Mater Interfaces. 2021;13(24):29048–29057. doi: 10.1021/acsami.1c04348.
  • Arnold W, Shikora SA. A comparison of burst pressure between buttressed versus non-buttressed staple-lines in an animal model. Obes Surg. 2005;15(2):164–171. doi: 10.1381/0960892053268309.
  • Downey DM, Harre JG, Dolan JP. Increased burst pressure in gastrointestinal staple-lines using reinforcement with a bioprosthetic material. Obes Surg. 2005;15(10):1379–1383. doi: 10.1381/096089205774859254.
  • Norbury KC, Kilpadi DV, Collins BA, et al. Burst strength testing of porcine intestinal anastomoses following negative pressure therapy. Surg Innov. 2012;19(2):181–186. doi: 10.1177/1553350611418254.
  • Li Y, Li G, Chen Y, et al. Gradient modulus tissue adhesive composite for dynamic wound closure. Adv Funct Mater. 2022;32(45):2207306. doi: 10.1002/adfm.202207306.
  • Li J, Celiz AD, Yang J. Tough adhesives for diverse wet surfaces. Science. 2017;357(6349):378–381. doi: 10.1126/science.aah6362.
  • Yuk H, Wu J, Sarrafian TL. Rapid and coagulation-independent haemostatic sealing by a paste inspired by barnacle glue. Nat Biomed Eng. 2021;5(10):1131–1142. doi: 10.1038/s41551-021-00769-y.
  • Hao LT, Park S, Choy S. Strong, multifaceted guanidinium-based adhesion of bioorganic nanoparticles to wet biological tissue. JACS Au. 2021;1(9):1399–1411. doi: 10.1021/jacsau.1c00193.
  • Anthis AHC, Hu X, Matter MT. Chemically stable, strongly adhesive sealant patch for intestinal anastomotic leakage prevention. Adv Funct Mater. 2021;31(16):2007099. doi: 10.1002/adfm.202007099.
  • Broughton W. Testing the mechanical, thermal and chemical properties of adhesives for marine environments. Adhes Mar Eng. 2012:99–154.
  • Molinspiration Chemoinformatics software. https://www.molinspiration.com.
  • Barrera-Rivera KA, Peponi L, Marcos-Fernández Á, et al. Synthesis, characterization and hydrolytic degradation of polyester-urethanes obtained by lipase biocatalysis. Polym Degrad Stab. 2014;108:188–194. doi: 10.1016/j.polymdegradstab.2014.04.004.
  • Guan J, Fujimoto KL, Sacks MS, et al. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials. 2005;26(18):3961–3971. doi: 10.1016/j.biomaterials.2004.10.018.
  • Mondal S, Martin D. Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications. Polym Degrad Stab. 2012;97(8):1553–1561. doi: 10.1016/j.polymdegradstab.2012.04.008.
  • Uscátegui YL, Arévalo FR, Díaz LE, et al. Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. J Biomater Sci Polym Ed. 2016;27(18):1860–1879. doi: 10.1080/09205063.2016.1239948.
  • Clauss M, Trampuz A, Borens O, et al. Biofilm formation on bone grafts and bone graft substitutes: comparison of different materials by a standard in vitro test and microcalorimetry. Acta Biomater. 2010;6(9):3791–3797. doi: 10.1016/j.actbio.2010.03.011.
  • Xu LC, Siedlecki CA. Antibacterial polyurethanes. Adv Polyurethane Biomater. 2016;247–284.
  • Corneillie S, Lan PN, Schacht E. Polyethylene glycol-containing polyurethanes for biomedical applications. Polym Int. 1998;46(3):251–259. doi: 10.1002/(SICI)1097-0126(199807)46:3<251::AID-PI6>3.0.CO;2-Z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.