1
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quantitative assessment method of thermal cycle accumulation mechanism during the pulsed laser single-channel multilayer cladding process

, ORCID Icon & ORCID Icon
Received 20 Feb 2024, Accepted 28 Jun 2024, Published online: 10 Jul 2024

References

  • Song B, Yu T, Jiang X, et al. Development mechanism and solidification morphology of molten pool generated by laser cladding. Int J Therm Sci. 2021;159:106579. doi: 10.1016/j.ijthermalsci.2020.106579.
  • Bendeich P, Alam N, Brandt M, et al. Residual stress measurements in laser clad repaired low pressure turbine blades for the power industry. Mater Sci Eng A. 2006;437(1):70–74. doi: 10.1016/j.msea.2006.04.065.
  • Bayraktar C, Demir E. A thermomechanical finite element model and its comparison to inherent strain method for powder-bed fusion process. Addit Manuf. 2022;54:102708. doi: 10.1016/j.addma.2022.102708.
  • Cui C, Wu M, Xia S. Effect of heat treatment on properties of laser cladding cobalt-based coating on 42CrMo steel surface. Chin J Laser. 2020;47(6):0602011. doi: 10.3788/CJL202047.0602011.
  • Javid Y, Ghoreishi M. Thermo-mechanical analysis in pulsed laser cladding of WC powder on Inconel 718. Int J Adv Manuf Technol. 2017;92(1-4):69–79. doi: 10.1007/s00170-017-0117-4.
  • Wei S, Wang G, Shin YC, et al. Comprehensive modeling of transport phenomena in laser hot-wire deposition process. Int J Heat Mass Transf. 2018;125:1356–1368. doi: 10.1016/j.ijheatmasstransfer.2018.04.164.
  • Ma P, Wu Y, Zhang P, et al. Solidification prediction of laser cladding 316L by the finite element simulation. Int J Adv Manuf Technol. 2019;103(1-4):957–969. doi: 10.1007/s00170-019-03566-9.
  • Gao J, Wu C, Hao Y, et al. Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding. Opt Laser Technol. 2020;129:106287. doi: 10.1016/j.optlastec.2020.106287.
  • Yan Z, Song L, Liu W, et al. Numerical analysis of thermal stress evolution of pulsed-wave laser direct energy deposition. Int J Adv Manuf Technol. 2021;115(5-6):1399–1410. doi: 10.1007/s00170-021-07154-8.
  • Li C, Zhang D, Gao X, et al. Numerical simulation method of the multi-field coupling mechanism for laser cladding 316L powder. Weld World. 2022;66(3):423–440. doi: 10.1007/s40194-021-01213-0.
  • Bennon WD, Incropera FP. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation. Int J Heat Mass Transf. 1987;30:2171–2187. doi: 10.1016/0017-9310(87)90095-0.
  • Gan Z, Yu G, He X, et al. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel. Int J Heat Mass Transf. 2017;104:28–38. doi: 10.1016/j.ijheatmasstransfer.2016.08.049.
  • Guo W, Zhang Y, Chai R. Numerical simulation and experimental study of single-track laser cladding of 304 stainless steels. Laser Optoelectron P. 2019;56(9):091401. doi: 10.3788/LOP56.091401.
  • Li C, Xu Y, Jia T, et al. Numerical simulation research on multifield coupling evolution mechanism of IN625 laser cladding on nodular cast iron. Int J Adv Manuf Technol. 2021;119(9-10):5647–5669. doi: 10.1007/s00170-021-08249-y.
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components–process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi: 10.1016/j.pmatsci.2017.10.001.
  • Sun Z, Guo W, Li L. Numerical modelling of heat transfer, mass transport and microstructure formation in a high deposition rate laser directed energy deposition process. Addit Manuf. 2020;33:101175. doi: 10.1016/j.addma.2020.101175.
  • Zhou W, Ke Y, Wang Q, et al. Development of cylindrical laminated methanol steam reforming microreactor with cascading metal foams as catalyst support. Fuel. 2017;191:46–53. doi: 10.1016/j.fuel.2016.11.058.
  • Li N, Xiong Y, Xiong H, et al. Microstructure, formation mechanism and property characterization of Ti + SiC laser cladded coatings on Ti6Al4V alloy. Mater Charact. 2019;148:43–51. doi: 10.1016/j.matchar.2018.11.032.
  • Han X, Da Zhang C, Li C, et al. Study on a multifield coupling mechanism and a numerical simulation method of a pulsed laser deposition process from a disk laser. Appl Phys A. 2021;127(1):1–19. doi: 10.1007/s00339-020-04180-3.
  • Tamanna N, Crouch R, Naher S. Progress in numerical simulation of the laser cladding process. Opt Laser Eng. 2019;122:151–163. doi: 10.1007/s00170-022-08960-4.
  • Hyde CJ, Sun W, Leen SB. Cyclic thermo-mechanical material modelling and testing of 316 stainless steel. Int J Pres Ves Pip. 2010;87(6):365–372. doi: 10.1016/j.ijpvp.2010.03.007.
  • Poulin JR, Kreitcberg A, Brailovski V. Effect of hot isostatic pressing of laser powder bed fused Inconel 625 with purposely induced defects on the residual porosity and fatigue crack propagation behavior. Addit Manuf. 2021;47:102324. doi: 10.1016/j.addma.2021.102324.
  • Kreitcberg A, Brailovski V, Turenne S. Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion. Mater Sci Eng. 2017;A 689:1–10. doi: 10.1016/j.msea.2017.02.038.
  • Shi X, Wen D, Wang S, et al. Investigation on friction and wear performance of laser cladding Ni-based alloy coating on brake disc. Optik. 2021;242:167227. doi: 10.1016/j.ijleo.2021.167227.
  • Mohd Yusuf S, Cutler S, Gao N. The impact of metal additive manufacturing on the aerospace industry. Metals-Basel. 2019;9(12):1286. doi: 10.3390/met9121286.
  • Liu H, Li M, Qin X, et al. Numerical simulation and experimental analysis of wide-beam laser cladding. Int J Adv Manuf Technol. 2019;100(1-4):237–249. doi: 10.1007/s00170-018-2740-0.
  • Hyde CJ, Sun W, Hyde TH, et al. Thermo-mechanical fatigue testing and simulation using a viscoplasticity model for a P91 steel. Comp Mater Sci. 2012;56:29–33. doi: 10.1016/j.commatsci.2012.01.006.
  • Linsen SHU, Bo W, Yayin HE. Optimization of process parameters of laser cladding 304L alloy powder based on orthogonal experiment. Mech Eng Sci. 2019;1(2):18–24. doi: 10.33142/me.v1i2.1656.
  • Yao M, Kong F, Tong W. A 3D finite element analysis of thermally induced residual stress distribution in stainless steel coatings on a mild steel by laser hot wire cladding. Int J Adv Manuf Technol. 2023;126(1-2):759–776. doi: 10.1007/s00170-023-11155-0.
  • Zhao C, Ma C, Yang J, et al. Numerical simulation study of multi-field coupling for laser cladding of shaft parts. Micromachines (Basel). 2023;14(2):493. doi: 10.3390/mi14020493.
  • Li C, Zhao J, Chen X, et al. Quantitative evaluation method for the impact parameters during the process of pulsed laser cladding of Fe60. Appl Phys A. 2023;129(2):93. doi: 10.1007/s00339-022-06362-7.
  • Chen LY, Yu TB, Xu PF, et al. In-situ NbC reinforced Fe-based coating by laser cladding: simulation and experiment. Surf Coat Technol. 2021;412:127027. doi: 10.1016/j.surfcoat.2021.127027.
  • Zhou W, Deng W, Lu L, et al. Laser micro-milling of microchannel on copper sheet as catalyst support used in microreactor for hydrogen production. Int J Hydrogen Energ. 2014;39(10):4884–4894. doi: 10.1016/j.ijhydene.2014.01.041.
  • Wu CB, Wang C, Kim J. Bending deformation prediction in a welded square thin-walled aluminum alloy tube structure using an artificial neural network. Int J Adv Manuf Technol. 2021;117(9-10):2791–2805. doi: 10.1007/s00170-021-07884-9.
  • Wu Q, Wang Y, Mei D, et al. Development of methanol steam reforming microreactor based on stacked wave sheets and copper foam for hydrogen production. Int J Hydrogen Energ. 2022;47(9):6282–6294. doi: 10.1016/j.ijhydene.2021.11.221.
  • Jia T, Li C, Jia S, et al. Influence mechanism of active elements on multi-field coupling in laser cladding Fe60 process. Int J Adv Manuf Technol. 2023;124(1-2):411–428. doi: 10.1007/s00170-022-10518-3.
  • Wen SY, Shin YC, Murthy JY. Modeling of coaxial powder flow for the laser direct deposition process. Int J Adv Manuf Technol. 2009;52(25-26):5867–5877. doi: 10.1016/j.ijheatmasstransfer.2009.07.018.
  • Liebl S, Stadter C, Ganser A, et al. Numerical simulation of laser beam welding using an adapted intensity distribution. J Laser Appl. 2017;29(2):022405. doi: 10.2351/1.4983235.
  • Lin J. Numerical simulation of the focused powder streams in coaxial laser cladding. J Mater Process Technol. 2000;105(1-2):17–23. doi: 10.1016/S0924-0136(00)00584-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.