195
Views
7
CrossRef citations to date
0
Altmetric
Articles

Anti-oxidative effect of the tyrosine kinase inhibitor nintedanib: a potential therapy for chronic lung allograft dysfunction?

, , &
Pages 128-145 | Received 05 Apr 2019, Accepted 02 Mar 2020, Published online: 13 Mar 2020

References

  • Verleden GM, Raghu G ,Meyer KC ,Glanville AR ,Corris P. A new classification system for chronic lung allograft dysfunction. J Heart Lung Transplant. 2014; 33(2):127–133. doi:10.1016/j.healun.2013.10.022.
  • Meyer KC, Raghu G, Verleden GM, et al., the ISHLT/ATS/ERS BOS Task Force Committee, An international ISHLT/ATS/ERS clinical practice guideline: diagnosis and management of bronchiolitis obliterans syndrome. Eur Respir J. 2014;44(6):1479–1503. doi:10.1183/09031936.00107514.
  • Verleden SE, Vos R, Vanaudenaerde BM, Verleden GM. Chronic lung allograft dysfunction phenotypes and treatment. J Thorac Dis. 2017;9(8):2650–2659. doi:10.21037/jtd.2017.07.81.
  • Burton CM, Iversen M, Carlsen J, et al. Acute cellular rejection is a risk factor for bronchiolitis obliterans syndrome independent of post-transplant baseline FEV1. J Heart Lung Transplant. 2009;28(9):888–893. doi:10.1016/j.healun.2009.04.022.
  • Madill J, Aghdassi E, Arendt BM, et al. Oxidative stress and nutritional intakes in lung patients with bronchiolitis obliterans syndrome. Transplant Proc. 2009;41(9):3838–3844. doi:10.1016/j.transproceed.2009.04.012.
  • Burlingham WJ, Love RB, Jankowska-Gan E, et al. IL-17- dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest. 2007;117(11):3498–3506. doi:10.1172/JCI28031.
  • Lemaître PH, Vokaer B, Charbonnier LM, et al. Cyclosporine A drives a Th17- and Th2-mediated posttransplant obliterative airway disease. Am J Transplant. 2013;13(3):611–620. doi:10.1111/ajt.12067.
  • Madill J, Aghdassi E, Arendt BM, et al. Lung transplantation: does oxidative stress contribute to the development of bronchiolitis obliterans syndrome?. Transplant Rev. 2009;23(2):103–110. doi:10.1016/j.trre.2009.01.003.
  • Mallol J, Aguirre V, Espinosa V. Increased oxidative stress in children with post infectious Bronchiolitis Obliterans. Allergol Immunopathol. 2011;39(5):253–258. doi:10.1016/j.aller.2010.09.003.
  • Van Eeden SF, Sin DD. Oxidative stress in chronic obstructive pulmonary disease : a lung and systemic process. Can Respir J. 2013;20(1):27–29. doi:10.1155/2013/509130.
  • Cheresh P, Kim SJ, Tulasiram S, Kamp DW. Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta. 2013;1832(7):1028–1040. doi:10.1016/j.bbadis.2012.11.021.
  • Esme H, Cemek M, Sezer M, et al. High levels of oxidative stress in patients with advanced lung cancer. Respirology. 2008;13(1):112–116. doi:10.1111/j.1440-1843.2007.01212.x.
  • Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer : respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. IJERPH. 2013;10(9):3886–3907. doi:10.3390/ijerph10093886.
  • Jeon DS, Ha EY, Mun KC. Effects of Cyclosporine on Oxidative Stress in Human Bronchial Epithelial Cells. Transplant Proc. 2012;44(4):988–990. doi:10.1016/j.transproceed.2012.01.091.
  • Lee SS, Tsai CH, Kuan YH, Huang FM, Chang YC. The upregulation of transglutaminase-2 by cyclosporin a in human gingival fibroblasts is augmented by oxidative stress. J Periodontol. 2013;84(10):1469–1475. doi:10.1902/jop.2012.120554.
  • Currò M, Ferlazzo N, Risitano R, et al. Transglutaminase 2 and phopholipase A2 interactions in the inflammatory response in human Thp-1 monocytes. Amino Acids. 2014; 46(3):759–766. doi:10.1007/s00726-013-1569-y.
  • Philp CJ, Siebeke I, Clements D, et al. Extracellular Matrix Cross-Linking Enhances Fibroblast Growth and Protects against Matrix Proteolysis in Lung Fibrosis. Am J Respir Cell Mol Biol. 2018;58(5):594–603. doi:10.1165/rcmb.2016-0379OC.
  • Richeldi L, Du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014; 370(22):2071–2082. doi:10.1056/NEJMoa1402584.
  • Hilberg F, Roth GJ, Krssak M, et al. BIBF 1120: Triple Angiokinase Inhibitor with Sustained Receptor Blockade and Good Antitumor Efficacy. Cancer Res. 2008; 68(12):4774–4782. doi:10.1158/0008-5472.CAN-07-6307.
  • Roth GJ, Binder R, Colbatzky F, et al. Nintedanib : from discovery to the clinic. J Med Chem. 2015;58(3):1053–1063. doi:10.1021/jm501562a.
  • von Süßkind-Schwendi M, Boxhammer E, Hirt SW, et al. The activity of nintedanib in an animal model of allogenic left lung transplantation resembling aspects of allograft rejection. Exp Lung Res. 2017;43(6–7):259–270. doi:10.1080/01902148.2017.1354408.
  • von Süßkind-Schwendi M, Rümmele P, Schmid C, Hirt SW, Lehle K. Lung transplantation in the fischer 344–wistar kyoto strain combination is a relevant experimental model to study the development of bronchiolitis obliterans in the rat. Exper Lung Res. 2012;38(3):111–123. doi:10.3109/01902148.2012.656820.
  • Wollin L, Maillet I, Quesniaux VV, Holweg A, Ryffel B. Anti-fibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor, nintedanib, in experimental models of lung fibrosis. J Pharmacol Exp Ther. 2014;349(2):209–220. doi:10.1124/jpet.113.208223.
  • Wollin L, Wex E, Pautsch A, et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J. 2015;45(5):1434–1445. doi:10.1183/09031936.00174914.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1/2):55–63. doi:10.1016/0022-1759(83)90303-4.
  • Gerlier D, Thomasset N. Use of MTT colorimetric assay to measure cell activation. J Immunol Methods. 1986;94(1-2):57–63. doi:10.1016/0022-1759(86)90215-2.
  • Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004;142(2):231–255. doi:10.1038/sj.bjp.0705776.
  • Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biol Med. 1999;27(5-6):612–616. doi:10.1016/S0891-5849(99)00107-0.
  • Kučera O, Endlicher R, Roušar T. The Effect of tert-butyl hydroperoxide-induced oxidative stress on lean and steatotic rat hepatocytes in vitro. Oxid Med Cell Longevity. 2014; 5:1–12. doi:10.1155/2014/752506.
  • Surolia R, Li FJ, Wang Z, et al. Vimentin intermediate filament assembly regulates fibroblast invasion in fibrogenic lung injury. JCI Insight. 2019;4(7):1–17. doi:10.1172/jci.insight.123253.
  • Crestani B, Besnard V, Plantier L, Borensztajn K, Mailleux A. Fibroblasts: the missing link between fibrotic lung diseases of different etiologies?. Respir Res. 2013;14(1):81. doi:10.1186/1465-9921-14-81.
  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked?. Free Radical Biol Med. 2010;49(11):1603–1616. doi:10.1016/j.freeradbiomed.2010.09.006.
  • Park HS, Kim SR, Lee YC. Impact of oxidative stress on lung diseases. Respirology. 2009;14(1):27–38. doi:10.1111/j.1440-1843.2008.01447.x.
  • Kuehnel M, Maegel L, Vogel-Claussen J, Robertus JL, Jonigk D. Airway remodelling in the transplanted lung. Cell Tissue Res. 2017;367(3):663–675. doi:10.1007/s00441-016-2529-0.
  • Shi S, Xue F. Current antioxidant treatments in organ transplantation. Oxid Med Cellular Longevity. 2016;2016:1–9. doi:10.1155/2016/8678510.
  • Williams A, Riise GC, Anderson BA, et al. Compromised antioxidant status and persistent oxidative stress in lung transplant recipients. Free Radical Res. 1999;30(5):383–393. doi:10.1080/10715769900300421.
  • Behr J, Maier K, Braun B, Schwaiblmair M, Vogelmeier C. Evidence for oxidative stress in bronchiolitis obliterans syndrome after lung and heart-lung transplantation. The Munich Lung Transplant Group. Transplantation. 2000;69(9):1856–1860. doi:10.1097/00007890-200005150-00020.
  • Scholma J, Slebos DJ, Boezen HM, et al. Eosinophilic granulocytes and interleukin-6 level in bronchoalveolar lavage fluid are associated with the development of obliterative bronchiolitis after lung transplantation. Am J Respir Crit Care Med. 2000;162(6):2221–2225. doi:10.1164/ajrccm.162.6.9911104.
  • Fahr A. Cyclosporin clinical pharmacokinetics. Clin Pharmacokinet. 1993;24(6):472–495. doi:10.2165/00003088-199324060-00004.
  • Rezzani R. Exploring cyclosporine A–side effects and the protective role-played by antioxidants: the morphological and immunohistochemical studies. Histol Histopathol. 2006;21(3):301–316. doi:10.14670/HH-21.301.
  • Hostettler KE, Halter JP, Gerull S, et al. Calcineurin inhibitors in bronchiolitis obliterans syndrome following stem cell transplantation. Eur Respir J. 2014;43(1):221–232. doi:10.1183/09031936.00199312.
  • Wolf A, Trendelenburg CF, Diez-Fernandez C, et al. Cyclosporine A-induced oxidative stress in rat hepatocytes. J Pharmacol Exp Ther. 1997;280(3):1328–1334.
  • Pérez de Hornedo J, de Arriba G, Calvino Fernández M, Benito S, Parra Cid T. [Cyclosporin A causes oxidative stress and mitochondrial dysfunction in renal tubular cells]. Nefrologia. 2007;27(5):565–573.
  • Rao SR, Subbarayan R, Ajitkumar S, Girija DM. Increased advanced oxidation protein products generation by cyclosporine–a and angiotensin ii in human gingival fibroblasts – Ex-vivo Study. JCDR. 2017;11(1):49–52. doi:10.7860/JCDR/2017/22246.9183.
  • de Arriba G, Calvino M, Benito S, Parra T. Cyclosporine A-induced apoptosis in renal tubular cells is related to oxidative damage and mitochondrial fission. Toxicol Lett. 2013;218(1):30–38. doi:10.1016/j.toxlet.2013.01.007.
  • Lai TS, Lin CJ, Wu YT, Wu CJ. Tissue transglutaminase (TG2) and mitochondrial function and dysfunction. Front Biosci. 2017;22(7):1114–1137. doi:10.2741/4536.
  • Lee ZW, Kwon SM, Kim SW, et al. Activation of in situ tissue transglutaminase by intracellular reactive oxygen species. Biochem Biophys Res Commun. 2003;305(3):633–640. doi:10.1016/S0006-291X(03)00835-0.
  • Caccamo D, Currò M, Ferlazzo N, Condello S, Ientile R. Monitoring of transglutaminase 2 under different oxidative stress conditions. Amino Acids. 2012;42(2-3):1037–1043. doi:10.1007/s00726-011-1018-8.
  • Chau DYS, Collighan RJ, Verderio EAM, Addy VL, Griffin M. The cellular response to transglutaminase-cross-linked collagen. Biomaterials. 2005;26(33):6518–6529. doi:10.1016/j.biomaterials.2005.04.017.
  • Olsen KC, Sapinoro RE, Kottmann RM, et al. Transglutaminase 2 and Its Role in Pulmonary Fibrosis. Am J Respir Crit Care Med. 2011;184(6):699–707. doi:10.1164/rccm.201101-0013OC.
  • Olsen KC, Epa AP, Kulkarni AA, et al. Inhibition of transglutaminase 2, a novel target for pulmonary fibrosis, by two small electrophilic molecules. Am J Respir Cell Mol Biol. 2014;50(4):737–747. doi:10.1165/rcmb.2013-0092OC.
  • Pourgholamhossein F, Rasooli R, Pournamdari M, et al. Pirfenidone protects against paraquat-induced lung injury and fibrosis in mice by modulation of inflammation, oxidative stress, and gene expression. Food Chem Toxicol. 2018;112:39–46. doi:10.1016/j.fct.2017.12.034.
  • Hostettler KE, Zhong J, Papakonstantinou E, et al. Anti-fibrotic effects of nintedanib in lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. Respir Res. 2014;15(1):157. doi:10.1186/s12931-014-0157-3.
  • Black SM, DeVol JM, Wedgwood S. Regulation of fibroblast growth factor-2 expression in pulmonary arterial smooth muscle cells involves increased reactive oxygen species generation. Am J Physiol. Cell Physiol. 2008;294(1):345–354.
  • Krstić J, Trivanović D, Mojsilović S, Santibanez JF. Transforming growth factor-beta and oxidative stress interplay: Implications in tumorigenesis and cancer progression. Oxid Med Cell Longevity. 2015;2015:1–15. doi:10.1155/2015/654594.
  • Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol – Lung Cellul Molecul Physiol. 2000;279(78):1005–1028.
  • Sauer H, Wartenberg M, Hescheler J. Cellular physiology and biochemistry reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem. 2001;11(4):173–186. doi:10.1159/000047804.
  • Laohaburanakit P, Chan A, Allen RP. Bronchiolitis obliterans. CRIAI. 2003;25(3):259–274. doi:10.1385/CRIAI:25:3:259.
  • Tikkanen JM, Hollmén M, Nykänen AI, et al. Role of platelet-derived growth factor and vascular endothelial growth factor in obliterative airway disease. Am J Respir Crit Care Med. 2006;174(10):1145–1152. 2006doi:10.1164/rccm.200601-044OC.
  • Kendall RT, Feghali-Bostwick CA, Rauch BH. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5(123):1–13. doi:10.3389/fphar.2014.00123.
  • Mesquita FS, Dyer SN, Heinrich DA, et al. Reactive oxygen species mediate mitogenic growth factor signaling pathways in human leiomyoma smooth muscle cells. Biol Reprod. 2010;82(2):341–351. doi:10.1095/biolreprod.108.075887.
  • Liu YM, Nepali K, Liou JP. Idiopathic pulmonary fibrosis: current status, recent progress, and emerging targets. J Med Chem. 2017;60(2):527–553. doi:10.1021/acs.jmedchem.6b00935.
  • Basso M, Berlin J, Li X, et al. Transglutaminase inhibition protects against oxidative stress induced neuronal death downstream of pathological ERK activation. J Neurosci. 2012;32(19):6561–6569. doi:10.1523/JNEUROSCI.3353-11.2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.