223
Views
14
CrossRef citations to date
0
Altmetric
Research Article

MiR-200a and miR-200b restrain inflammation by targeting ORMDL3 to regulate the ERK/MMP-9 pathway in asthma

, , , &
Pages 321-331 | Received 03 Dec 2019, Accepted 02 Jun 2020, Published online: 21 Aug 2020

References

  • Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–2196. doi:10.1016/S0140-6736(12)61729-2.
  • Liu Y, Zhang H, Ni R, Jia W-Q, Wang Y-Y. IL-4R suppresses airway inflammation in bronchial asthma by inhibiting the IL-4/STAT6 pathway. Pulm Pharmacol Ther. 2017;43:32–38. doi:10.1016/j.pupt.2017.01.006.
  • Chen W-Q, Xie Z-Z, Wang X, et al. Influences of PON1 on airway inflammation and remodeling in bronchial asthma. J Cell Biochem. 2018;119(1):793–805. doi:10.1002/jcb.26242.
  • Baroffio M, Barisione G, Crimi E, Brusasco V. Noninflammatory mechanisms of airway hyper-responsiveness in bronchial asthma: an overview. Ther Adv Respir Dis. 2009;3(4):163–174. doi:10.1177/1753465809343595.
  • Nakagome K, Nagata M. Pathogenesis of airway inflammation in bronchial asthma. Auris Nasus Larynx. 2011;38(5):555–563. doi:10.1016/j.anl.2011.01.011.
  • Qu X, Chen Y, Yin C. Effect of montelukast on the expression of CD4(+)CD25(+) regulatory T cells in children with acute bronchial asthma. Exp Ther Med. 2018;16(3):2381–2386. doi:10.3892/etm.2018.6485.
  • Ravi A, Chowdhury S, Dijkhuis A, Bonta PI, Sterk PJ, Lutter R. Neutrophilic inflammation in asthma and defective epithelial translational control. Eur Respir J. 2019;54(2):1900547. doi:10.1183/13993003.00547-2019.
  • Laxmi V, Gupta R, Bhattacharya SK, Ray A, Gulati K. Inhibitory effects of sildenafil and tadalafil on inflammation, oxidative stress and nitrosative stress in animal model of bronchial asthma. Pharmacol Rep. 2019;71(3):517–521. doi:10.1016/j.pharep.2019.02.008.
  • Cheng Q, Shang Y. ORMDL3 may participate in the pathogenesis of bronchial epithelial‑mesenchymal transition in asthmatic mice with airway remodeling. Mol Med Rep. 2018;17(1):995–1005. doi:10.3892/mmr.2017.7972.
  • Miller M, Rosenthal P, Beppu A, et al. ORMDL3 transgenic mice have increased airway remodeling and airway responsiveness characteristic of asthma. J Immunol. 2014;192(8):3475–3487. doi:10.4049/jimmunol.1303047.
  • Anatriello E, Cunha M, Nogueira J, et al. Oral feeding of Lactobacillus bulgaricus N45.10 inhibits the lung inflammation and airway remodeling in murine allergic asthma: Relevance to the Th1/Th2 cytokines and STAT6/T-bet. Cell Immunol. 2019;341:103928. doi:10.1016/j.cellimm.2019.103928.
  • Fehrenbach H, Wagner C, Wegmann M. Airway remodeling in asthma: what really matters. Cell Tissue Res. 2017;367(3):551–569. doi:10.1007/s00441-016-2566-8.
  • Hur GY, Broide DH. Genes and pathways regulating decline in lung function and airway remodeling in asthma. Allergy Asthma Immunol Res. 2019;11(5):604–621. doi:10.4168/aair.2019.11.5.604.
  • Yu F, Sun Y, Yu J, et al. ORMDL3 is associated with airway remodeling in asthma via the ERK/MMP-9 pathway. Mol Med Rep. 2017;15(5):2969–2976. doi:10.3892/mmr.2017.6413.
  • Das S, Miller M, Broide DH. Chromosome 17q21 Genes ORMDL3 and GSDMB in asthma and immune diseases. Adv Immunol. 2017;135:1–52. doi:10.1016/bs.ai.2017.06.001.
  • Wu X-L, Li R, Zhang H-W, et al. Methylation status of ORMDL3 regulates cytokine production and p-ERK/MMP9 pathway expression. Exp Cell Res. 2018;372(1):43–51. doi:10.1016/j.yexcr.2018.09.008.
  • Liu Y, Miao Y, Gao X, et al. MicroRNA-200a affects the proliferation of airway smooth muscle cells and airway remodeling by targeting FOXC1 via the PI3K/AKT signaling pathway in ovalbumin-induced asthmatic mice. Cell Physiol Biochem. 2018;50(6):2365–2389. doi:10.1159/000495097.
  • Lu Y, Li Z, Xie B, Song Y, Ye X, Liu P. hsa-miR-20a-5p attenuates allergic inflammation in HMC-1 cells by targeting HDAC4. Mol Immunol. 2019;107:84–90. doi:10.1016/j.molimm.2019.01.010.
  • Ding XQ, Wu WY, Jiao RQ, et al. Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/NLRP3 inflammasome inhibition. Pharmacol Res. 2018;137:64–75. doi:10.1016/j.phrs.2018.09.021.
  • Lo W-Y, Yang W-K, Peng C-T, Pai W-Y, Wang H-J. MicroRNA-200a/200b Modulate high glucose-induced endothelial inflammation by targeting O-linked N-Acetylglucosamine transferase expression. Front Physiol. 2018;9:355–355.
  • Kozak J, Wdowiak P, Maciejewski R, Torres A. Interactions between microRNA-200 family and Sestrin proteins in endometrial cancer cell lines and their significance to anoikis. Mol Cell Biochem. 2019;459(1–2):21–34. doi:10.1007/s11010-019-03547-2.
  • Tang X, Wu F, Fan J, Jin Y, Wang J, Yang G. Posttranscriptional regulation of Interleukin-33 expression by MicroRNA-200 in bronchial asthma. Mol Ther. 2018;26(7):1808–1817. doi:10.1016/j.ymthe.2018.04.016.
  • Matsui S, Zhou L, Nakayama Y, et al. MiR-200b attenuates IL-6 production through IKKβ and ZEB1 in human gingival fibroblasts. Inflamm Res. 2018;67(11–12):965–973. doi:10.1007/s00011-018-1192-1.
  • Shen Y, Zhou M, Yan J, et al. miR-200b inhibits TNF-α-induced IL-8 secretion and tight junction disruption of intestinal epithelial cells in vitro. Am J Physiol Gastrointest Liver Physiol. 2017;312(2):G123–G132. doi:10.1152/ajpgi.00316.2016.
  • Sphingolipids TW. ORMDL3 and asthma: what is the evidence. Curr Opin Clin Nutr Metab Care. 2017;20(2):99–103.
  • James B, Milstien S, Spiegel S. ORMDL3 and allergic asthma: From physiology to pathology. J Allergy Clin Immunol. 2019;144(3):634–640. doi:10.1016/j.jaci.2019.07.023.
  • Gerard CR, César F, Fanny RM, Valverde MA, Rubén V. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum Mol Genet. 2010;19(1):111–121. doi:10.1093/hmg/ddp471.
  • Ono JG, Worgall TS, Worgall S. 17q21 locus and ORMDL3: an increased risk for childhood asthma. Pediatr Res. 2014;75(1–2):165–170. doi:10.1038/pr.2013.186.
  • Shanmuganathan S, Angayarkanni N. Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation. Vascul Pharmacol. 2018;108:23–35. doi:10.1016/j.vph.2018.04.005.
  • Patruno A, Ferrone A, Costantini E, et al. Extremely low-frequency electromagnetic fields accelerates wound healing modulating MMP-9 and inflammatory cytokines. Cell Prolif. 2018;51(2):e12432. doi:10.1111/cpr.12432.
  • Kim S-J, Pham T-H, Bak Y, Ryu H-W, Oh S-R, Yoon D-Y. Orientin inhibits invasion by suppressing MMP-9 and IL-8 expression via the PKCα/ ERK/AP-1/STAT3-mediated signaling pathways in TPA-treated MCF-7 breast cancer cells. Phytomedicine. 2018;50:35–42. doi:10.1016/j.phymed.2018.09.172.
  • Naik SP, Mahesh PA, Jeyaraj BS, Madhunapantula SV, Jahromi SR, Yadav MK. Evaluation of inflammatory markers interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP-9) in asthma. J Asthma. 2017;54(6):584–593. doi:10.1080/02770903.2016.1244828.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.