88
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Carboxyl terminus of Hsc70-interacting protein (CHIP) promotes pulmonary artery smooth muscle cell (PASMC) proliferation via enhancement of intracellular Ca2+ concentration ([Ca2+]i)

&
Pages 332-340 | Received 13 Nov 2019, Accepted 02 Jun 2020, Published online: 02 Sep 2020

References

  • Ballinger CA, Connell P, Wu Y, et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol. 1999;19(6):4535–4545. doi:10.1128/MCB.19.6.4535.
  • Martineau CN, Le Dall MT, Melki R, Beckerich JM, Kabani M. Molecular and functional characterization of the only known hemiascomycete ortholog of the carboxyl terminus of Hsc70-interacting protein CHIP in the yeast Yarrowia lipolytica. Cell Stress Chaperones. 2012;17(2):229–241. doi:10.1007/s12192-011-0302-6.
  • Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI. U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem. 2001;276(35):33111–33120. doi:10.1074/jbc.M102755200.
  • Nikolay R, Wiederkehr T, Rist W, Kramer G, Mayer MP, Bukau B. Dimerization of the human E3 ligase CHIP via a coiled-coil domain is essential for its activity. J Biol Chem. 2004;279(4):2673–2678. doi:10.1074/jbc.M311112200.
  • Connell P, Ballinger CA, Jiang J, et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol. 2001;3(1):93–96. doi:10.1038/35050618.
  • Demand J, Alberti S, Patterson C, Hohfeld J. Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol. 2001;11(20):1569–1577. doi:10.1016/S0960-9822(01)00487-0.
  • Jiang J, Ballinger CA, Wu Y, et al. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem. 2001;276(46):42938–42944. doi:10.1074/jbc.M101968200.
  • Patani N, Jiang W, Newbold R, Mokbel K. Prognostic implications of carboxyl-terminus of Hsc70 interacting protein and lysyl-oxidase expression in human breast cancer. J Carcinog. 2010;9:9. doi:10.4103/1477-3163.72505.
  • Kim JH, Shin S, Seo J, et al. C-terminus of HSC70-Interacting protein (CHIP) inhibits adipocyte differentiation via ubiquitin- and Proteasome-Mediated degradation of PPARgamma. Sci Rep. 2017;7:40023. doi:10.1038/srep40023.
  • Jiang B, Shen H, Chen Z, Yin L, Zan L, Rui L. Carboxyl terminus of HSC70-interacting protein (CHIP) down-regulates NF-kappaB-inducing kinase (NIK) and suppresses NIK-induced liver injury. J Biol Chem. 2015;290(18):11704–11714. doi:10.1074/jbc.M114.635086.
  • Yan WQ, Wang JL, Tang BS. [Functions of carboxyl-terminus of Hsc70 interacting protein and its role in neurodegenerative disease]. Zhong Xue Chuan Xue Zhi. 2012;29(4):426–430. doi:10.3760/cma.j.issn.1003-9406.2012.04.010.
  • Dong F, Zhang J. Inactivation of carboxyl terminus of Hsc70-interacting protein prevents hypoxia-induced pulmonary arterial smooth muscle cells proliferation by reducing intracellular Ca(2+) concentration. Pulm Circ. 2019;9(3):204589401987534. doi:10.1177/2045894019875343.
  • Gaynitdinova VV, Avdeev SN. Novel biomarkers of pulmonary hypertension. Kardiologiia. 2019;59(7):84–94. doi:10.18087/cardio.2019.7.10259.
  • Maron BA, Galie N. Diagnosis, treatment, and clinical management of pulmonary arterial hypertension in the contemporary era: a review. JAMA Cardiol. 2016;1(9):1056–1065. doi:10.1001/jamacardio.2016.4471.
  • Fukuda K, Date H, Doi S, et al. Guidelines for the treatment of pulmonary hypertension (JCS 2017/JPCPHS 2017). Circ J. 2019;83(4):842–945. doi:10.1253/circj.CJ-66-0158.
  • Morrell NW, Adnot S, Archer SL, et al. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1):S20–S31. doi:10.1016/j.jacc.2009.04.018.
  • Machado RD. The molecular genetics and cellular mechanisms underlying pulmonary arterial hypertension. Scientifica 2012;2012:106576. doi:10.6064/2012/106576.
  • Lin MJ, Leung GP, Zhang WM, et al. Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res. 2004;95(5):496–505. doi:10.1161/01.RES.0000138952.16382.ad.
  • Song S, Carr SG, McDermott KM, et al. STIM2 (Stromal interaction molecule 2)-Mediated increase in resting cytosolic free ca(2+) concentration stimulates PASMC proliferation in pulmonary arterial hypertension. Hypertension. 2018;71(3):518–529. doi:10.1161/HYPERTENSIONAHA.117.10503.
  • Zhang J, Lu W, Chen Y, et al. Bortezomib alleviates experimental pulmonary hypertension by regulating intracellular calcium homeostasis in PASMCs. Am J Physiol Cell Physiol. 2016;311(3):C482–C497. doi:10.1152/ajpcell.00324.2015.
  • Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res. 2006;98(12):1528–1537. doi:10.1161/01.RES.0000227551.68124.98.
  • Cheng KT, Ong HL, Liu X, Ambudkar IS. Ambudkar IS: contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr. 2013;71:149–179. doi:10.1016/B978-0-12-407870-3.00007-X.
  • Xia Y, Yang XR, Fu Z, et al. Classical transient receptor potential 1 and 6 contribute to hypoxic pulmonary hypertension through differential regulation of pulmonary vascular functions. Hypertension. 2014;63(1):173–180. doi:10.1161/HYPERTENSIONAHA.113.01902.
  • Wang J, Shimoda LA, Sylvester JT. Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L848–L858. doi:10.1152/ajplung.00319.2003.
  • Wang J, Jiang Q, Wan L, et al. Sodium tanshinone IIA sulfonate inhibits canonical transient receptor potential expression in pulmonary arterial smooth muscle from pulmonary hypertensive rats. Am J Respir Cell Mol Biol. 2013;48(1):125–134. doi:10.1165/rcmb.2012-0071OC.
  • Parekh AB, Putney JJ. Store-operated calcium channels. Physiol Rev. 2005;85(2):757–810. doi:10.1152/physrev.00057.2003.
  • Moiseenkova-Bell V, Wensel TG. Functional and structural studies of TRP channels heterologously expressed in budding yeast. Adv Exp Med Biol. 2011;704:25–40. doi:10.1007/978-94-007-0265-3_2.
  • Falcon D, Galeano-Otero I, Calderon-Sanchez E, et al. TRP channels: current perspectives in the adverse cardiac remodeling. Front Physiol. 2019;10:159. doi:10.3389/fphys.2019.00159.
  • Malczyk M, Erb A, Veith C, et al. The role of transient receptor potential channel 6 channels in the pulmonary vasculature. Front Immunol. 2017;8:707. doi:10.3389/fimmu.2017.00707.
  • Wang Y, Lu W, Yang K, et al. Peroxisome proliferator-activated receptor gamma inhibits pulmonary hypertension targeting store-operated calcium entry. J Mol Med. 2015;93(3):327–342. doi:10.1007/s00109-014-1216-4.
  • Jiang Q, Lu W, Yang K, et al. Sodium tanshinone IIA sulfonate inhibits hypoxia-induced enhancement of SOCE in pulmonary arterial smooth muscle cells via the PKG-PPAR-gamma signaling axis. Am J Physiol Cell Physiol. 2016;311(1):C136–C149. doi:10.1152/ajpcell.00252.2015.
  • Yang K, Lu W, Jiang Q, et al. Peroxisome proliferator-activated receptor gamma-mediated inhibition on hypoxia-triggered store-operated calcium entry. A caveolin-1-dependent mechanism. Am J Respir Cell Mol Biol. 2015;53(6):882–892. doi:10.1165/rcmb.2015-0002OC.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.